LE MAGAZINE DES SCIENCES DE L’UNIVERS EN AFRIQUE
La Bassin de l’Anambé (Vélingara) Première structure d’impact météoritique au Sénégal

La Bassin de l’Anambé (Vélingara) Première structure d’impact météoritique au Sénégal

Cet article est la suite d’un premier article publiée par l’Astronomie Afrique sur au sujet de la dépression circulaire de Vélingara, ou bassin de l’Anambé, potentielle structure d’impact météoritique au Sénégal.

L’équipe de recherche internationale (France, Sénégal, Côte d’Ivoire) poursuit ses recherches sur la dépression circulaire de l’Anambé afin d’élucider son origine, dans le cadre de l’Initiative Africaine pour les Sciences des Planètes et de l’Espace (https://africapss.org). Cette structure est considérée depuis une vingtaine d’année comme une possible structure d’impact météoritique érodée et enfouie sous des sédiments. Identifiée dans les données d’imagerie satellite, elle a fait l’objet de très rares visites de terrain. Les récents travaux de recherche ont pour objectif d’obtenir les données et financements nécessaires à la réalisation d’une campagne de forage, indispensable pour prouver l’origine météoritique de cette structure. Mais rappelons d’abord quelles sont les motivations ce projet.

Pourquoi chercher des cratères d’impact et pourquoi en Afrique de l’Ouest ?

 L’Afrique, et plus spécifiquement l’Afrique de l’Ouest montre un déficit de structures d’impact par rapport à d’autres régions de globe, en particulier par rapport l’Amérique du Nord, à l’Europe et à l’Australie. Il y a donc un potentiel important de découvertes. Avec une géologie riche de terrains anciens, et des climats arides dans la zone Sahélienne, il est possible à la fois de découvrir des structures d’impact importantes et anciennes, et des petits cratères d’impact récents et préservés de l’érosion. L’Afrique de l’ouest compte seulement trois structures d’impact confirmées, Bosumtwi (diamètre : 10.5 km, âge : 1 million d’années) au Ghana, Aouelloul (390 m, 3.1 millions d’années) et Tenoumer. Cette compte compte cependant un plus grand nombre de structures d’impact potentielles qui attendent des recherche sur le terrain pour être confirmées (Fig. 1). La recherche de ces structures d’impact est importante pour compléter nos connaissances sur l’histoire du bombardement météoritique sur Terre (et préciser le risque de collisions avec des astéroïdes), et pour comprendre le rôle qu’on pu jouer à l’échelle locale, régionale et mondiale ces collisions sur l’évolution de notre planète. Un tiers des structures d’impact météoritiques sont également associées à des ressources naturelles (réservoir d’eau, métaux, hydrocarbures, diamants) ou sont des lieux importants pour le développement économique et touristique d’un pays.

Fig. 1. Vue Satellite de l’Afrique de l’Ouest avec les 3 structures d’impact confirmées et les structures d’impact potentielles (source: Bing imagery).

Que sait-on sur le bassin de l’Anambé ?

Le bassin de l’Anambé est connu au Sénégal pour les projets agricoles qui y sont menés par la SODAGRI (Société de Développement Agricole et Industriel du Sénégal). La dépression circulaire permet une retenue d’eau naturelle. A l’aide de deux petits barrages installés au sud de la dépression, il est possible de contrôler l’irrigation du site pour un développement agricole du bassin de l’Anambé. Le centre de la dépression est occupé par un lac entouré de champs, essentiellement pour la culture du riz. En raison de cette irrigation exceptionnelle, le site est caractérisé par une biodiversité importante. La zone du lac regorge d’espèces végétales, d’oiseaux et, les paysages remarquables  de ce site en font un lieu pour le développement du tourisme en Casamance (Fig. 2), qui est aujourd’hui essentiellement concentré dans la région côtière.

Depuis l’espace, la dépression de Vélingara d’environ 40 km de diamètre est bien visible, malgré un relief peu marqué : seulement quelques dizaines de mètres entre le sommet du rempart circulaire et le centre de la dépression (Fig. 3). Si Vélingara est une structure d’impact météoritique, elle est nécessairement ancienne (plusieurs dizaines voire centaines de millions d’années) et très érodée. La cartographie géologique, réalisée il y a plusieurs dizaines d’années à l’aide de données de forages indique que la structure est essentiellement recouverte de sédiments récents. Au centre, ces données de forages hydrauliques (les échantillons ne sont malheureusement plus disponibles aujourd’hui), indiquent que le socle, qui peut donc contenir les preuves d’un impact, est situé seulement sous quelques dizaines de mètres de sédiments. Pour une structure d’impact de cette dimension, on s’attendrait à voir un soulèvement central, formé lors de la phase d’effondrement et rebond gravitaire qui fait immédiatement suite à l’excavation. L’absence de pic central dans les données topographiques est donc énigmatique, bien que celui-ci ait pu être simplement érodé.

Fig – 3 – Gauche : carte topographie et relief ombré de la dépression de l’Anambé. Un rempart circulaire est bien visible, cette morphologie est très évocatrice d’une structure d’impact, mais l’absence d’un pic central attendu pour une structure de cette dimension est énigmatique.

Quels sont les résultats de la première campagne de terrain menée en 2022 par l’équipe de chercheurs Français, Sénégalais et Ivoiriens ?

 En mars 2022, une équipe internationale composée de chercheurs de Toulouse et Aix-en-Provence (France), de  l’Université Cheikh Anta Diop de Dakar, de la SOMISEN SA et de l’Université Félix Houphouët-Boigny (Abidjan, Côte d’Ivoire) a réalisé une campagne de géophysique dont l’objectif était de cartographier les éventuelles anomalies gravimétriques et magnétiques associées à cette structure. La structure étant recouverte de sédiment, la géophysique est le seul moyen de connaitre la nature et la structure des roches en profondeur. La géophysique ne peut pas à elle-seule prouver l’origine météoritique de la dépression de Vélingara, mais elle peut orienter les recherches vers cette hypothèse ou d’autres hypothèses, et elle fournit des données essentielles en prévision de la réalisation d’un nouveau forage. Le résultat principal de cette campagne a été la découverte d’une anomalie circulaire de -15 mGal, compatible avec l’hypothèse météoritique. Cependant, les dimensions de cette anomalie sont bien inférieures à celle de la morphologie de la dépression (10 km de diamètre seulement) (Fig. 4), et ont donc lancé un débat au sein de l’équipe de chercheurs sur les dimensions réelles de la structure d’impact. L’histoire post-impact et l’érosion sont-ils capables de produire une dépression de 40 km à partir d’un cratère de 10 km ? Ou bien, quels sont les spécificités de cette structure qui expliquent un tel désaccord entre les observations de surface et les observations gravimétriques ? Le débat va se poursuivre, sans doute pour un troisième épisode dans l’Astronomie Afrique !

Fig. 4 – Principal résultat de la campagne de géophysique menée 2022 : découverte d’une anomalie circulaire gravimétrique de -15 mGal, traduisant un déficit de masse dans la région centrale de la dépression de Vélingara (sources : Quesnel et al., en révision).

Que faut-il faire pour prouver que Vélingara est un impact météoritique ?

Les preuves d’un choc entre un astéroïde et notre planète nécessite d’analyser en laboratoire des roches marquées par le passage d’une violente onde de choc se propageant lors de cette collision. A l’échelle de l’échantillon, il est possible de trouver la présence de « cônes de percussions » qui sont associées de manière unique aux structures d’impact (Fig. 5). La présence de cônes de percussions dans une roche prélevée en place au sein d’une structure circulaire est donc suffisante pour prouver l’origine météoritique de cette structure. A l’échelle microscopique, les minéraux montrent des figures de déformation et des transitions de phase « haute pression » qui sont également diagnostiques de ce que l’on appelle métamorphisme de choc. La recherche de ce type d’échantillons est donc une priorité pour déterminer l’origine de la dépression de Vélingara. Etant donné la couverture de plusieurs dizaines de mètres de sédiments, un forage carotté est la seule option pour obtenir ces précieux échantillons. L’équipe internationale déploie donc les efforts nécessaires pour obtenir les accords et le financement nécessaire pour réaliser ce forage en 2024. Les échantillons de ce forage seront conservés au Sénégal, avec l’appui d’un financement de la Meteoritical Society obtenu en 2023. Ce forage bénéficiera de collaborations avec le Centre International de Recherche sur les Impacts et sur Rochechouart (CIRIR). Rochechouart est la seule structure d’impact située en France. Le CIRIR, sous la houlette enthousiaste de son directeur, Philippe Lambert, a pu réaliser plusieurs forages de plusieurs centaines de mètre au total de cette structure. L’expérience lors du forage de cette structure sera précieuse pour assurer le succès d’une campagne de forage de la dépression de Vélingara.

Fig. 5 – Gauche : côte de percussion observés dans des roches calcaires (Agoudal, Maroc). Noter les striations divergentes sur les surfaces courbées des cônes de percussion. Droite : « Planar Deformation Features » dans un grain de quartz observés au microscope. Noter les fines bandes sombres parallèles distantes les unes des autres de quelques de micromètres.

David Baratoux

Références bibliographiques

Quesnel, Y., Rochette, P., Baratoux, D., Niang, C.A.B., Fall, M., Kouame, N.L, Wade, S., Kaire, M, Faye, G., Champollion, C. Potential-Field Measurements on The Velingara Candidate Impact Structure (Senegal), Journal of African Earth Science, en révision.

 

Journée Internationale des Femmes et des Filles de Science à Madagascar – “Célébrer les femmes astronomes malagasy”

Journée Internationale des Femmes et des Filles de Science à Madagascar – “Célébrer les femmes astronomes malagasy”

Le 11 Février 2023, l’IAU NOC Madagascar a organisé, à l’occasion la Journée Internationale des Femmes et des Filles de Science, l’évènement “Célébrer les femmes astronomes malagasy”!

Les participants et les bénévoles de l’IDWGS 2023 organisé par l’IAU NOC Madagascar

 

Chaque année, le 11 février a  lieu la célébration de la Journée internationale des femmes et des filles de science. Cette journée, mise en place par les Nations Unies en 2015, vise à promouvoir l’accès des femmes et des filles à l’éducation, à la formation et à l’emploi dans les domaines des STEM, ainsi que de sensibiliser le grand public à l’importance de la diversité et de l’égalité des genres dans ces domaines.

L’ International Astronomical Union (IAU) National Outreach Coordinators (NOC) Madagascar a organisé un évènement intitulé “Célébrer les femmes Astronomes Malagasy” à l’Institut et Observatoire de Géophysique d’Antananarivo pour marquer cette date. Les femmes et filles, qui œuvrent dans le domaine de l’astronomie à Madagascar, ont été mises en avant dans ces lieux où les frères jésuites ont bâti le premier observatoire astronomique du pays en 1889. Le but était de partager les expériences et les bonnes choses que cette science a apporté dans leur vie ainsi que d’inspirer ceux et celles qui sont venus pour la suite de leur carrière.

Le public a assisté à différentes présentations et animations, à commencer par l’intervention de Mlle Tombo Fitahiana Rarivoarinoro, diplômée en astrophysique de l’Université d’Antananarivo. Elle y a exposé son parcours, du bacc scientifique jusqu’au master en Astrophysique, marqué par sa participation au projet DARA (Development for Africa through Radio Astronomy), à Madagascar et au Ghana, ainsi que de l’école d’été LEAPS (Leiden/ESA Astrophysics Program for Summer Students), au Pays-Bas. Elle y a présenté aussi ses recherches sur les radio galaxies mourantes, principalement sur le mystère des radio galaxies géantes.

Tombo Fitahiana Rarivoarinoro lors de sa présentation

 

Après cette présentation, une séance de partage a été faite par des diplômées, des étudiantes et des amateurs en astronomie et astrophysiques sur “Les femmes malagasy oeuvrant dans le domaine de l’astronomie”. Le but était d’inspirer l’audience à s’intéresser de plus en plus à ce domaine.

Les panélistes de la séance de partage : “Les femmes malagasy oeuvrant dans le domaine de l’astronomie”

 

Une séance d’observation du soleil avec des lunettes astronomiques offertes par SSVI a clôturé les activités. Pour certains des participants, ce fut une première expérience avec un matériel d’observation, donc une petite initiation, à leur utilisation, a aussi été donnée.

Observation du Soleil

 

Les petits jeux comme la classification des galaxies ou aussi la reconstitution de la vie d’une étoile ont permis de briser la glace et de sortir du cadre formel.

Les différents jeux lors de la journée.

 

L’événement a été un grand succès, attirant des étudiants, des parents et des professionnels de différents domaines pour une passion commune, l’astronomie. L’IAU NOC Madagascar, Zara Andriamanakoto et ses bénévoles ont su mettre en avant les femmes astronomes malagasy, des sources d’inspiration pour les jeunes filles qui ont assisté à l’événement et qui ont pu découvrir l’astronomie et ses possibilités.

par Andoniaina Rajaonarivelo, Haikintana

 

 

Spectrométrie gamma de la structure d’impact météoritique de Rochechouart

Spectrométrie gamma de la structure d’impact météoritique de Rochechouart

De nombreuses structures d’impact restent à découvrir sur le continent Africain. Pour cela, il faut former la nouvelle génération de géologues à reconnaitre les indices des conséquences des chutes de météorites sur les roches de la croûte terrestre. Le Centre International de Recherche & Restitution sur les Impacts et sur Rochechouart (https://cirir-edu.org/en), au cœur de la structure d’impact de Rochechouart (Fig. 1) est un lieu idéal pour remplir cet objectif, ainsi que pour développer de nouvelles méthodes d’étude des structures d’impact.

Cheikh Ahmadou Bamba NIANG, jeune chercheur, ayant soutenu sa thèse sur les structures d’impact en 2022 à l’Université Cheikh Anta Diop de Dakar effectue depuis le Sénégal ses recherches sur la structure d’impact Rochechouart. Que vient-il chercher au CIRIR et à Rochechouart ?

1 – Localisation de la structure d’impact de Rochechouart et du Centre de Recherche sur les Impact sur Rochechouart sur le terrain français.

 

Son travail de doctorat, qui a permis de documenter les signatures radiométriques de cratères d’impact et élucider l’origine des deux anneaux enrichis en Potassium (K) de la structure d’impact Bosumtwi au Ghana, a ouvert un nouveau champ de recherche : l’étude de la signature gamma des structures d’impact. Le rayonnement gamma est bien connu des astronomes. C’est le rayonnement le plus énergétique, au-delà donc des rayons X. En Astronomie, observer le rayonnement gamma permet d’étudier les processus physiques les plus violents et énergétiques de notre univers : étoiles en fin de vie, supernovas, pulsars, quasars, trous noirs stellaires et supermassifs, galaxies actives.  En Afrique,  le High Energy Stereoscopic System (HESS) est un réseau de télescopes à imagerie Tcherenkov atmosphérique situé à Gamsberg en Namibie pour l’étude des rayons gamma entre quelques dizaines de GeV et quelques TeV. L’acronyme est choisi en l’honneur de Victor Franz Hess, physicien autrichien et américain, qui découvre l’existence du rayonnement cosmique.

Ce rayonnement est aussi observé par les géologues lorsqu’ils regardent non pas vers le ciel, mais vers le sous-sol. Un rayonnement gamma est naturellement émis lors de la désintégration naturelle d’éléments présents dans les sols et roches terrestres. 40K, 232Th, et 238Th sont les trois principaux isotopes instables qui contribuent à ce rayonnement gamma naturel. Ces éléments étant présents au début de l’histoire de la terre, mais comme le taux de désintégration est très lent, il en reste toujours aujourd’hui. Il faut par exemple plus de 14 milliards d’années pour que la quantité de 232Th soit divisée par deux dans une roche. Au passage, ces trois isotopes sont également la source d’énergie interne de la Terre, à l’origine des volcans et des mouvements de convection du manteau, de la tectonique des plaques, et des tremblements de terre.

La cartographie de ce rayonnement permet de remonter à la concentration en potassium (K), thorium (Th) et uranium (U). Ces trois éléments sont très intéressants pour les géologues. Lors de la fusion des roches ou la cristallisation fractionnée, ils préfèrent demeurer avec les liquides silicatés. Leur concentration varie donc sur plusieurs ordres de grandeur et témoignent de l’histoire magmatique des roches étudiées. Lorsque les roches sont en contact avec des fluides, K est transportée, et une roche peut-être très appauvrie en K après le passage d’un fluide, ou enrichie par un fluide très riche en K. En revanche, Th demeure immobile. Pour U, sa mobilité dépend des conditions d’oxydoréduction. La forme réduit de l’uranium (U4+) est contenue dans des minéraux généralement insoluble. La forme oxydée (U6+) est en revanche plus mobile. Ce sont donc de bien précieux traceurs des processus géologiques. Le fait de pouvoir les cartographier à l’aide du rayonnement gamma a conduit à développer de nombreuses techniques au sol, et depuis le ciel, et même l’espace pour établir des cartes de ces éléments, sur Terre, en particulier pour la prospection des ressources minérales et sur d’autres planètes, comme Mars.

Qu’observe-t-on à Rochechouart quand on examine le rayonnement gamma et les éléments qui le produisent ?

Il existe une zone, au centre de la structure actuelle, qui est très riche en potassium (Fig. 2). Les concentrations en potassium dans les échantillons de roche atteignent parfois 10 %, ce qui est assez exceptionnel dans les matériaux terrestres naturels. Ces concentrations extrêmes en potassium sont le résultat d’un phénomène couramment observé dans les grandes structures d’impact : l’hydrothermalisme. En présence d’eau dans le sous-sol, la fracturation et la chaleur produite lors de l’impact sont responsables de la mise en place d’un système hydrothermal. La structure se refroidit progressivement, sur des milliers, voire des millions d’années, selon la taille de la structure. Les gradients thermiques ainsi formés sont responsables de la mise en mouvement de l’eau contenue dans le sous-sol, par simple contraste de densité (l’eau chaude est plus légère que l’eau froide et aura donc tendance à remonter au sein des aquifères). Ce système hydrothermal à transporté le potassium, et par métasomatisme, a enrichi en potassium les roches actuellement exposées à la surface.

2 – Carte de la concentration en Potassium sur la région de Rochechouart, superposée à une carte en relief ombré. Les zones riches en potassium apparaissent en rouge, les zones pauvres en potassium en bleu (source : BRGM).

 

Les cartes obtenues lors d’un survol aéroporté avec une détecteur capable de mesurer le rayonnement gamma, montrent une zone assez nette enrichie en potassium (Fig. 2), qui correspond aussi à la présence des brèches d’impact de Rochechouart : il s’agit de fragments de roche, mélangés ou non avec une matrice fondue lors de l’impact. Ces roches, chaudes au moment de l’impact, sont naturellement au cœur du système hydrothermal de Rochechouart. Mais l’interprétation des données aéroportées soulève de nombreuses questions.

Que signifient les variations en potassium observées dans les données aéroportées ? Sont-elles associés à des brèches de nature différente, à des quantités de matériau fondu différents dans les brèches ? Peut-on distinguer les différents types de brèches à partir de ces données ? Peut-on distinguer les limites de la zone qui a subi l’hydrothermalisme à l’aide de ces données ? D’autre part, à Rochechouart, les affleurements de roches sont rares. Lors d’un survol aéroporté, le détecteur ne mesure pas directement les concentrations dans les roches, mais essentiellement dans le sol, épais de quelques dizaines de centimètre d’épaisseur (Fig. 3) et qui est issu de la dégradation des roches et de la présence de matière organique. Le géologue a besoin de concentrations en K dans les roches pour réfléchir, et non dans des sols sur lesquels paissent paisiblement les vaches du Limousin.

 

3 – Illustration de ce que voit un détecteur  lors d’un survol aéroporté. Une source de rayonnement (disque rouge) verra son rayonnement atténué si elle est enfouie sur une certaine profondeur de sol, et à fortiori de roches.

 

4 – Illustration d’une mesure au sol à l’aide du spectromètre  qui permet en quelques minutes de déterminer les concentrations en K, Th et U dans le sous-sol.

 

Pour résoudre ces questions, il faut aller sur le terrain, et ce fut l’objectif de plusieurs missions de Cheikh Ahmadou Bamba Niang (Fig. 4). Par tous les temps (qui peuvent être rigoureux à Rochechouart), il a sillonné la région centrale du cratère pour mieux comprendre ce que l’on voit sur la donnée aéroportée. Il a donc documenté les relations qui existent entre la géochimie des sols et la géochimie des roches sur cette région, et a également patiemment réalisé des profils radiométriques, à l’aide de plusieurs spectroradiomètres portables. Les spectres obtenus permettent de déduire les concentrations en K, Th et U dans les roches et sols mesurés sur des échelles de l’ordre du mètre cube (Fig. 5). En effet, les photons gamma, très énergétiques, peuvent traverser roches ou sols sur des distance de l’ordre de plusieurs dizaines de centimètres. En revanche, on ne peut voir ce qu’il y a à plusieurs dizaines de mètres. Et dans ce cas, ce sont les forages réalisés à Rochechouart, sous la direction de Philippe Lambert qui sont utiles. Ce sont donc ainsi plusieurs centaines de mesures qui sont en cours d’analyses, et qui nous permettront de déchiffrer, avec l’aide des relevés radiométriques dans les forages, l’étendue en 3 dimensions de l’hydrothermalisme du cratère d’impact de Rochechouart.

Fig. 5 – Exemple de spectre gamma obtenu lors d’une mission de terrain à Rochechouart. La partie en rouge est intégrée pour calculer la concentration en potassium dans le sol. On fait de même pour le Thorium et l’Uranium dont les chaînes de désintégration comportent des émetteurs gamma.

 

Par Cheikh Ahmadou Bamba Niang, David Baratoux

Remerciements : Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique (projet AWA, Astrophysics and Planetary Science in Africa), African Initiative for Planetary and Space Science (AFIPS, https://africapss.org), Centre International de Recherche & Restitution sur les Impacts et sur Rochechouart (https://cirir-edu.org/en).

Signatures radiométriques des structures d’impact : Applications et Perspectives pour l’Exploration Géologique.

Signatures radiométriques des structures d’impact : Applications et Perspectives pour l’Exploration Géologique.

Les cratères d’impact

Les cratères d’impacts sont des structures géologiques en forme de dépression circulaire, formées par l’impact lorsqu’un astéroïde (ou une comète) entre en collision avec la surface d’un corps planétaire (French, 1998). La vitesse de ces collisions est très élevée (plusieurs kilomètres à dizaines de kilomètres par seconde), et le processus d’impact implique une physique très particulière pour rendre compte des phénomènes intenses et rapides qui se produisent sous l’effet de la pression et de la chaleur produite par ces impacts. Ce phénomène, souvent qualifié de catastrophe géologique, est cependant un processus très commun dans le Système Solaire, et sans doute dans l’ensemble des systèmes planétaires.

Figure 1 : Carte radiométrique de l’Australie (K : 0 – 2,91 wt %, canal rouge ; Th : 0 – 31,93 ppm, canal vert ; U : 0 – 3,58 ppm, canal bleu). La localisation des 17 structures d’impact exposées de diamètre > 3 km est indiquée. Les structures d’impact associées à des motifs radiométriques circulaires en K, Th, et/ou U sont mises en évidence en jaune et rouge. Les motifs circulaires les plus proéminents et qui ont été examinés en détail dans cette étude sont indiqués en rouge. Les cercles noirs indiquent les structures d’impact ne présentant pas de motifs radiométriques circulaires.

 

Sur Terre, les structures d’impact sont étudiées par des approches pétro-géochimiques à partir des échantillons de roche prélevés sur le terrain, ou lors de forages. Ils sont également étudiées par des méthodes géophysiques permettant de connaitre la nature du sous-sol, en particulier à l’aide de la gravimétrie, du magnétisme, ou de la sismique réflexion/réfraction. Parmi les méthodes géophysiques, la radiométrie a rarement été utilisée pour étudier les cratères d’impact.

 

Figure 2 : Carte radiométrique combinée à une image en relief ombrée de la structure d’impact de Bosumtwi, et localisation des mesures in situ des concentrations en K, Th et U sur la carte radiométrique. Potassium : 0 – 2,5 wt%, Th : 0 – 9 ppm, U : 0 – 4 ppm, modifiée d’après Baratoux et al. (2019) Projection cartographique : UTM zone 30 N.

 

Qu’est-ce que la radiométrie ?

La radiométrie est une méthode géophysique basée sur la physique nucléaire. Elle consiste à quantifier les concentrations des radionucléides 40K, 232Th, 238U à partir de l’énergie des rayonnements gamma émis par le sol et le substratum rocheux (Dickson and Scott, 1997; Minty, 1997). Ces radionucléides sont naturellement présents dans les roches terrestres. Un radionucléide est un nucléide instable, qui peut donc se décomposer en émettant un rayonnement. Les données radiométriques sont acquises en altitude (aéroportées), au sol (in situ) à l’aide d’un spectromètre portable par exemple, ou en profondeur (gamma logging). Les données radiométriques fournissent donc des estimations des concentrations du potassium (K), du thorium (Th) et de l’uranium (U) dans le sol, le régolithe et la roche. Elles constituent une source importante d’informations géochimiques, c’est pourquoi, elles sont utilisées depuis des décennies dans l’exploration minière et dans la cartographie géologique de la Terre et des autres planètes.

Figure 3 : Carte radiométrique ternaire combinée à une image en relief ombrée de la structure d’impact de Rochechouart. Potassium : 0 – 2,6 wt%, Th : 0 – 9,4 ppm, U : 0 – 4 ppm. Projection de la carte : Lambert II étendu. Les cercles gris représentent la position des mesures au sol.

 

Que peut apporter la radiométrique pour l’étude des cratères d’impact météoritiques ?

Nous avons essayé de démontrer la valeur scientifique des données radiométriques pour la recherche sur l’impact, c’est-à-dire d’une part, pour l’interprétation des données radiométriques des corps extraterrestres, et d’autre part, pour une meilleure utilisation de ces données dans les études de structures d’impact terrestres connues, et pourquoi pas, pour la recherche de nouvelles structures d’impact !

Mon travail de doctorat représente une étude des signatures radiométriques de plusieurs structures d’impact, et la première étude sur les causes possibles des redistributions observées du K, Th et U dans les structures d’impact. Nous sommes partis du général au particulier, en étudiant d’abord les signatures radiométriques des structures d’impact en Australie. Il s’agit de l’observation de toutes les signatures radiométriques des structures d’impact et l’analyse de cinq structures d’impact d’entre elles (Fig. 1). Sur la carte radiométrique de l’Australie et pour les autres cartes radiométriques, on représente le potassium en rouge, le thorium en vert, l’uranium en bleu. Sur ces représentations ternaires, les zones rouges sont donc riches en potassium, et les zones bleu-vert sont riches en thorium et uranium, et correspondent souvent à des roches latéritiques (altérées) ou la potassium, mobile en présence d’eau, a été lessivé.

Ensuite, nous avons étudié l’anomalie en potassium de la structure d’impact de Bosumtwi au Ghana (Fig. 2) connue depuis une vingtaine d’année, et enfin la structure d’impact de Rochechouart en France (Fig. 3). Ces études ont démontré que la déformation de la croûte terrestre induite par le choc et les processus superficiels tels que l’érosion ou l’altération contrôlés par la topographie du cratère sont les principales causes des signatures radiométriques associées aux structures d’impact. Dans le cas de la structure d’impact de Rochechouart, ces études ont permis de cartographier l’enrichissement en potassium des impactites en réponse à l’activité hydrothermale qui a affecté les roches fondues de la structure. Dans le cas de Bosumtwi, l’origine de l’anomalie en potassium a pu être élucidée.

Sur la base des observations de terrain et des analyses des concentrations du nucléides cosmogénique comme le béryllium, nous avons pu montrer que l’anomalie résulte de l’érosion différentielle de la structure, contrôlée par sa topographie initiale en compétition avec les processus d’altération des roches (formation de régolithe).

 

Figure 4 : Cheikh Ahmadou Bamba Niang, accompagné de Antoine Aginili Avo (UFHB), étudiant un affleurement de brèche lithique d’impact (B046) à l’Est de la structure d’impact de Bosumtwi.

 

Cerise sur le gâteau, nos travaux de terrain ont permis également de révéler la similitude des éjecta de Bosumtwi avec les éjecta lobés ou fluidisés, présents sur d’autres corps du système solaire (Mars). Cela fait de Bosumtwi un « analogue » pour les planétologues et donc un laboratoire naturel pour comprendre la mise en place de ces morphologies d’éjecta.

Les résultats des travaux ont également permis de valider l’hypothèse que les données radiométriques sont utiles pour la recherche de nouvelles structures d’impact potentielles, en particulier dans la ceinture tropicale, et permettront certainement la caractérisation de nouvelles structures d’impact.

Bamba Niang

Des experts du spatial au Sénégal

Des experts du spatial au Sénégal

L’utilisation de satellites prend une place de plus importante dans notre société moderne, que ce soit pour les télécommunications, la défense, le suivi de l’environnement et le climat. Les satellites ne sont pas seulement tournés par la Terre, ils explorent aussi l’Univers, et jouent donc aussi un rôle important pour l’astronomie. L’usage de données venant du spatial et le lancement de satellites, jusqu’ici réservés à quelques grandes puissances, deviennent accessibles à de plus en plus d’acteurs publics ou privés. Ainsi, chaque année, de nouvelles nations africaines s’illustrent par le lancement de satellites et le domaine spatial connaît une très belle dynamique en Afrique.

Dans le cadre de l’évaluation et du suivi des politiques et programmes publics de la république du Sénégal, un groupe d’experts internationaux s’est réuni à Dakar pour contribuer à l’élaboration d’une politique de la politique  de l’espace du pays de la Teranga. Ce travail s’est fait sous la présidence de El Hadji Ibrahima Sall, mandaté par le président de la République du Sénégal, Macky Sall pour évaluer toutes les politiques publiques du pays. L’astronome sénégalais Maram Kairé a été chargé de former un groupe d’experts internationaux pour plancher sur les enjeux de la politique spatiale du Sénégal..

De nombreux sujets ont été abordés, allant d’un tour d’horizon des politiques d’espace dans le monde jusqu’aux opportunités industrielles du New Space. Le Newspace, c’est en quelques sortes l’émergence du privé dans le domaine spatial, qui depuis le début de l’ère spatiale était guidé par des politiques étatiques des nations dites spatiales (Les Etats Unis et La Russie d’abord, puis des nations européennes, asiatiques et nord-américaines). Les coûts de construction et de lancement de petits satellites (nanosatellites, cubsat) ont révolutionné l’accès à l’espace. . Ainsi, plusieurs nations africaines (Algérie, Egypte, Maroc, Nigéria, Tunisie, Afrique du Sud, Ghana, Soudan, Ile Maurice, Ethiopie, Angola, Kenya et Rwanda) ont déjà lancé des satellites dans l’espace. Ces satellites sont souvent des démonstrateurs, aux applications encore limitées, mais ils créent une dynamique intéressante pour la formation de scientifiques et d’ingénieurs du domaine spatial. Les différents acteurs sont ainsi sensibilisés aux applications du domaine spatial dans le domaine des ressources naturelles, de la sécurité aux frontières, du changement climatique, et des problématiques de santé publique.

Enfin, de longues discussions sur les opportunités en recherche et formation dans le domaine de l’espace (télédétection, planétologie, astronomie) ont permis de mettre en avant les opportunités offertes par ces domaines pour la jeunesse du pays.

Le groupe d’experts, réuni le 12 et le 13 Janvier à Dakar a émis une série de recommandations pour une politique de l’espace du Sénégal. Ces recommandations visent à faire émerger au Sénégal un écosystème autour du spatial, et une utilisation plus efficiente des données et produits d’observation de la Terre pour les enjeux du pays. Nous souhaitons tous un avenir prospère au Sénégal dans le domaine spatial!

Maram Kairé, Eric Lagadec, David Baratoux

Instagram
YouTube
YouTube
Follow by Email