LE MAGAZINE DES SCIENCES DE L’UNIVERS EN AFRIQUE
Journée Astronomie Afrique au 33ème Festival d’Astronomie de Fleurance

Journée Astronomie Afrique au 33ème Festival d’Astronomie de Fleurance

Le 33ème Festival d’Astronomie de Fleurance  a eu lieu du 4 au 11 août 2023 dans le Gers en France et a attiré comme les autres années des milliers de festivaliers. Plus de 60 chercheurs sont venus partager les nouvelles de l’Univers et rencontrer le public de tout âge. Vous pouvez découvrir le programme sur le site du festival. Une journée consacrée à l’Astronomie en Afrique au lieu le lundi 7 août.

 

 

Lors de cette journée, quatre animations et conférences se sont déroulées.

Le matin à 11h, Mayssa El Yazidi, géologue planétaire tunisienne et marraine de cette journée a réalisé devant 400 personnes une conférence intitulée « La mission européenne Bepi Colombo: une nouvelle ère dans l’exploration de Mercure ». Mayssa El Yazidi a obtenu son doctorat du Centre d’études et d’activités spatiales «G. Colombo»  à l’Université de Padoue en Italie. Son travail porte sur la cartographie géologique et l’analyse des structures tectoniques de certaines zones sur Mars et Mercure. En 2016, elle a obtenu son master à la Faculté des Sciences de l’Université de Tunis El Manaar, et elle est devenue la première femme et chercheuse tunisienne à avoir promu le concept de planétologie en Tunisie. Elle a été invitée à l’Agence Spatiale Européenne (ESA)-ESTEC aux Pays-Bas et ses recherches ont été soutenues par la Fondation Cassa di Risparmio di Padova. Au cour de sa conférence, Mayssa a fait découvrir la mission Bepi Colombo, mission spatiale coopérative entre l’ESA et la JAXA qui a été lancée en octobre 2018. Cette mission est composée de deux sondes MPO et MMO, et a comme objectif d’en savoir plus sur la géologie de cette planète, ainsi que l’origine des « hollows », curieuses dépressions bleues, qui restent encore mal connues.

 

Mayssa El Yazidi présentant les objectifs de la mission Bepi Colombo

 

Le dimanche 6 août (10h30-12h30) matin et lundi 7 août après midi (14h30-16h30) a eu lieu un atelier intitulé « Ciel d’Afrique et d’ailleurs » animé par Mayssa El Yazidi et Eric Lagadec. Au cours de cet atelier interactif avec des quiz, l’utilisation de cartes du ciel, et des dessins de constellations, le public a découvert les origines africaines de nos connaissances astronomiques et ont appris que chaque peuple a ses propres représentations du ciel. Eric et Mayssa ont ensuite invité le public à partager le ciel avec eux et ont expliqué pourquoi selon l’endroit où l’on se trouve sur cet immense continent, l’apparence du ciel change.

La journée a continué à 17h avec un café astro consacré au developpement de l’Astronomie en Afrique animé par Sébastien Carassou. Mayssa El Yazidi, Eric Lagadec, Caroline Lachowski et Sylvain Bouley ont répondu aux questions du public sur les objectifs futurs et les actions en cours de réalisation sur le continent africain.

Quentin Lazzarotto lance le débat après la projection du film

 

Dans le cadre du 2ème festival du film de Fleurance a été projeté le film « Les chasseurs d’étoiles du Sénégal » réalisé par Ruth Berry. Ce film retrace le lien entre l’Astronomie et Maram Kaire, président de l’Association Sénégalaise pour la Promotion de l’Astronomie et directeur de la toute nouvelle Agence Sénégalaise d’Etudes Spatiales. Avec pour fil conducteur la mission d’observation d’occultation stellaire organisé en 2021 dans le cadre de la mission américaine Lucy, ce film démontre a quel point l’astronome sénégalais Maram Kaire est convaincu que la science changera le destin de son pays. A la suite de la projection du film, un débat animé par Quentin Lazzarotto s’est déroulé en compagnie de Mayssa El Yazidi, Eric Lagadec et Sylvain Bouley. La bonne nouvelle a eu lieu à la fin de la semaine lorsque le jury du festival du film a remis le prix spécial du jury.

 

Sylvain Bouley

Société Astronomique de France / Université Paris Saclay

 

Festivals Populaires d’Astronomie, « the Algerian Way » Constantine, Capitale de l’Astronomie Populaire en Afrique

Festivals Populaires d’Astronomie, « the Algerian Way » Constantine, Capitale de l’Astronomie Populaire en Afrique

Au cours des 20 dernières années, se tient chaque année en Algérie un rassemblement d’astronomie, qui met les astronomes professionnels et amateurs en contact étroit avec le public. Ces « festivals populaires d’astronomie » ont commencé en 2001 à Constantine, capitale de l’Est Algérien en conjonction avec la célébration de la Semaine Mondiale de l’Espace de cette année-là.

 

Figure 1- Les festivals annuels d’astronomie populaire : une contribution substantielle à la culture scientifique sur la scène algérienne et au-delà depuis les deux dernières décennies.

 

Il a commencé modestement comme un événement entièrement local, pour devenir rapidement après les premières éditions un rassemblement international avec des participants de divers pays, bien qu’ils soient encore modestement appelés festivals nationaux. Ce festival est unique à bien des égards et est probablement le plus grand (et certainement le plus régulier et durable) événement de l’astronomie populaire en Afrique et au Moyen-Orient, en plus d’être à la confluence de trois régions, à savoir l’Afrique, le Maghreb et le bassin méditerranéen.

 

Figure 2- Chaque festival a un thème spécifique. Ici une mosaïque de posters des dix premiers festivals environ.

 

La philosophie du festival

Ces festivals annuels ont pour but de faire découvrir l’astronomie au public de manière symbiotique entre les trois composantes du triptyque, chacune dans son rôle. Ainsi les associations d’amateurs invitées à participer au festival sont au service du public dans un rôle unique passeurs d’astronomie et à ce titre elles sont bien dans leur rôle. En retour, leurs membres bénéficient du large éventail d’activités qui s’y déroulent. Nous laissons aux astronomes professionnels les présentations de niveau supérieur pour la composante la plus éclectique du public présent. Quant au grand public, il est le miroir qui permet aux deux autres composantes de communiquer l’astronomie de la manière la plus adaptée et de perfectionner leurs aptitudes de passeurs de science. Par ailleurs, certains jeunes du public peuvent s’inspirer et faire de l’astronomie leur vocation, alimentant ainsi en quelque sorte la boucle. Autre événement marquant, la traditionnelle table ronde organisée le deuxième jour et où un panel diversifié d’astronomes approfondit un peu plus le thème spécifique du Festival, comme cette année, l’ »Univers Invisible ».

 

Figure 3- Donner l’occasion aux astronomes amateurs pour passer à l’action

 

Notons que nous utilisons le qualificatif « populaire » dans l’appellation des Festivals, en référence à la tradition de sensibilisation de Camille Flammarion, le grand vulgarisateur de l’astronomie française de la fin du 19e au début du 20e siècle qui a promu l’expression « astronomie populaire », c’est-à-dire l’astronomie pour le public.

 

Figure 4- Sessions gratuites de planétarium pour tous. De nouveaux contenus sont créés chaque année, qui se conjuguent avec le thème du festival.

 

La dix-huitième édition du Festival

L’édition de cette année, la première depuis les années Covid, a accueilli quelque 35 associations astronomiques algériennes et étrangères, et les participants sont venus de douze pays dont cinq africains. Elle a également accueilli des agences et institutions nationales liées à l’astronomie et à l’espace comme le Centre de Recherche en Astronomie, Astrophysique et Géophysique (CRAAG), l’Agence Spatiale Algérienne (ASAL), le Centre de Développement des Technologies Avancées (CDTA)… Comme d’ habitude, le Festival a accueilli divers astronomes d’Europe, du Maghreb et d’Afrique du Sud en particulier, s’exprimant principalement sur le thème de cette année à savoir « L’Univers Infrarouge », célébrant une année de riche moisson scientifique du télescope spatial James Webb (JWST) après un an de mise en service.

 

Figure 5- L’édition 2023 du Festival portait sur l’Univers infrarouge et la riche récolte scientifique du JWST. Voici une vue d’une partie de l’emplacement où les expositions et les stands des astronomes amateurs étaient déployés

 

Figure 6- La table ronde traditionnelle portant sur le thème du Festival est l’un des points forts de l’événement. Içi un panel d’astronomes venant de sept pays différents lors du 15e festival populaire d’astronomie.

 

Plusieurs expositions permanentes étaient présentes, notamment une sur la « Conquête de l’Espace » et la seconde étant l’impressionnante « Symphonie Cosmique » composée d’une cinquantaine de panneaux portant sur tous les aspects de l’Univers. Parmi les différents pays africains et arabes présents, la Palestine était présente même si aucun astronome de là-bas n’a pu venir en personne. Une magnifique exposition d’astrophotographie, « Le ciel de Palestine », réalisée par des astronomes amateurs chevronnés de Cisjordanie et de Gaza était exposée. A noter également que des séances gratuites de planétarium pour le public ainsi que toutes sortes d’activités pour les jeunes enfants ont eu lieu tout au long du Festival. Un modèle entièrement réaliste à l’échelle 1/10 du JWST réalisé par notre équipe a été exposé avec un miroir pliable télécommandé.

 

Figure 7- Un modèle entièrement réaliste à l’échelle 1/10 du JWST avec un miroir pliable commandé à distance.

 

8 – Une partie de l’exposition « Symphonie cosmique » composée de 50 panneaux.

 

Plus de détails sur le dernier Festival se trouvent à l’adresse suivante:

http://www.siriusalgeria.net/salon023.htm

tandis que les détails des 20 derniers festivals peuvent être consultés à l’adresse suivante:

http://www.siriusalgeria.net/salon023/participants.htm#01

Pourquoi ne pas se donner rendez-vous au prochain Festival 2024 en Avril prochain !

 

Jamal Mimouni  

Université de Constantine1, Algérie

Président, Association Sirius d’Astronomie

Exco, African Astronomical Society (AfAS)

 

La Bassin de l’Anambé (Vélingara) Première structure d’impact météoritique au Sénégal

La Bassin de l’Anambé (Vélingara) Première structure d’impact météoritique au Sénégal

Cet article est la suite d’un premier article publiée par l’Astronomie Afrique sur au sujet de la dépression circulaire de Vélingara, ou bassin de l’Anambé, potentielle structure d’impact météoritique au Sénégal.

L’équipe de recherche internationale (France, Sénégal, Côte d’Ivoire) poursuit ses recherches sur la dépression circulaire de l’Anambé afin d’élucider son origine, dans le cadre de l’Initiative Africaine pour les Sciences des Planètes et de l’Espace (https://africapss.org). Cette structure est considérée depuis une vingtaine d’année comme une possible structure d’impact météoritique érodée et enfouie sous des sédiments. Identifiée dans les données d’imagerie satellite, elle a fait l’objet de très rares visites de terrain. Les récents travaux de recherche ont pour objectif d’obtenir les données et financements nécessaires à la réalisation d’une campagne de forage, indispensable pour prouver l’origine météoritique de cette structure. Mais rappelons d’abord quelles sont les motivations ce projet.

Pourquoi chercher des cratères d’impact et pourquoi en Afrique de l’Ouest ?

 L’Afrique, et plus spécifiquement l’Afrique de l’Ouest montre un déficit de structures d’impact par rapport à d’autres régions de globe, en particulier par rapport l’Amérique du Nord, à l’Europe et à l’Australie. Il y a donc un potentiel important de découvertes. Avec une géologie riche de terrains anciens, et des climats arides dans la zone Sahélienne, il est possible à la fois de découvrir des structures d’impact importantes et anciennes, et des petits cratères d’impact récents et préservés de l’érosion. L’Afrique de l’ouest compte seulement trois structures d’impact confirmées, Bosumtwi (diamètre : 10.5 km, âge : 1 million d’années) au Ghana, Aouelloul (390 m, 3.1 millions d’années) et Tenoumer. Cette compte compte cependant un plus grand nombre de structures d’impact potentielles qui attendent des recherche sur le terrain pour être confirmées (Fig. 1). La recherche de ces structures d’impact est importante pour compléter nos connaissances sur l’histoire du bombardement météoritique sur Terre (et préciser le risque de collisions avec des astéroïdes), et pour comprendre le rôle qu’on pu jouer à l’échelle locale, régionale et mondiale ces collisions sur l’évolution de notre planète. Un tiers des structures d’impact météoritiques sont également associées à des ressources naturelles (réservoir d’eau, métaux, hydrocarbures, diamants) ou sont des lieux importants pour le développement économique et touristique d’un pays.

Fig. 1. Vue Satellite de l’Afrique de l’Ouest avec les 3 structures d’impact confirmées et les structures d’impact potentielles (source: Bing imagery).

Que sait-on sur le bassin de l’Anambé ?

Le bassin de l’Anambé est connu au Sénégal pour les projets agricoles qui y sont menés par la SODAGRI (Société de Développement Agricole et Industriel du Sénégal). La dépression circulaire permet une retenue d’eau naturelle. A l’aide de deux petits barrages installés au sud de la dépression, il est possible de contrôler l’irrigation du site pour un développement agricole du bassin de l’Anambé. Le centre de la dépression est occupé par un lac entouré de champs, essentiellement pour la culture du riz. En raison de cette irrigation exceptionnelle, le site est caractérisé par une biodiversité importante. La zone du lac regorge d’espèces végétales, d’oiseaux et, les paysages remarquables  de ce site en font un lieu pour le développement du tourisme en Casamance (Fig. 2), qui est aujourd’hui essentiellement concentré dans la région côtière.

Depuis l’espace, la dépression de Vélingara d’environ 40 km de diamètre est bien visible, malgré un relief peu marqué : seulement quelques dizaines de mètres entre le sommet du rempart circulaire et le centre de la dépression (Fig. 3). Si Vélingara est une structure d’impact météoritique, elle est nécessairement ancienne (plusieurs dizaines voire centaines de millions d’années) et très érodée. La cartographie géologique, réalisée il y a plusieurs dizaines d’années à l’aide de données de forages indique que la structure est essentiellement recouverte de sédiments récents. Au centre, ces données de forages hydrauliques (les échantillons ne sont malheureusement plus disponibles aujourd’hui), indiquent que le socle, qui peut donc contenir les preuves d’un impact, est situé seulement sous quelques dizaines de mètres de sédiments. Pour une structure d’impact de cette dimension, on s’attendrait à voir un soulèvement central, formé lors de la phase d’effondrement et rebond gravitaire qui fait immédiatement suite à l’excavation. L’absence de pic central dans les données topographiques est donc énigmatique, bien que celui-ci ait pu être simplement érodé.

Fig – 3 – Gauche : carte topographie et relief ombré de la dépression de l’Anambé. Un rempart circulaire est bien visible, cette morphologie est très évocatrice d’une structure d’impact, mais l’absence d’un pic central attendu pour une structure de cette dimension est énigmatique.

Quels sont les résultats de la première campagne de terrain menée en 2022 par l’équipe de chercheurs Français, Sénégalais et Ivoiriens ?

 En mars 2022, une équipe internationale composée de chercheurs de Toulouse et Aix-en-Provence (France), de  l’Université Cheikh Anta Diop de Dakar, de la SOMISEN SA et de l’Université Félix Houphouët-Boigny (Abidjan, Côte d’Ivoire) a réalisé une campagne de géophysique dont l’objectif était de cartographier les éventuelles anomalies gravimétriques et magnétiques associées à cette structure. La structure étant recouverte de sédiment, la géophysique est le seul moyen de connaitre la nature et la structure des roches en profondeur. La géophysique ne peut pas à elle-seule prouver l’origine météoritique de la dépression de Vélingara, mais elle peut orienter les recherches vers cette hypothèse ou d’autres hypothèses, et elle fournit des données essentielles en prévision de la réalisation d’un nouveau forage. Le résultat principal de cette campagne a été la découverte d’une anomalie circulaire de -15 mGal, compatible avec l’hypothèse météoritique. Cependant, les dimensions de cette anomalie sont bien inférieures à celle de la morphologie de la dépression (10 km de diamètre seulement) (Fig. 4), et ont donc lancé un débat au sein de l’équipe de chercheurs sur les dimensions réelles de la structure d’impact. L’histoire post-impact et l’érosion sont-ils capables de produire une dépression de 40 km à partir d’un cratère de 10 km ? Ou bien, quels sont les spécificités de cette structure qui expliquent un tel désaccord entre les observations de surface et les observations gravimétriques ? Le débat va se poursuivre, sans doute pour un troisième épisode dans l’Astronomie Afrique !

Fig. 4 – Principal résultat de la campagne de géophysique menée 2022 : découverte d’une anomalie circulaire gravimétrique de -15 mGal, traduisant un déficit de masse dans la région centrale de la dépression de Vélingara (sources : Quesnel et al., en révision).

Que faut-il faire pour prouver que Vélingara est un impact météoritique ?

Les preuves d’un choc entre un astéroïde et notre planète nécessite d’analyser en laboratoire des roches marquées par le passage d’une violente onde de choc se propageant lors de cette collision. A l’échelle de l’échantillon, il est possible de trouver la présence de « cônes de percussions » qui sont associées de manière unique aux structures d’impact (Fig. 5). La présence de cônes de percussions dans une roche prélevée en place au sein d’une structure circulaire est donc suffisante pour prouver l’origine météoritique de cette structure. A l’échelle microscopique, les minéraux montrent des figures de déformation et des transitions de phase « haute pression » qui sont également diagnostiques de ce que l’on appelle métamorphisme de choc. La recherche de ce type d’échantillons est donc une priorité pour déterminer l’origine de la dépression de Vélingara. Etant donné la couverture de plusieurs dizaines de mètres de sédiments, un forage carotté est la seule option pour obtenir ces précieux échantillons. L’équipe internationale déploie donc les efforts nécessaires pour obtenir les accords et le financement nécessaire pour réaliser ce forage en 2024. Les échantillons de ce forage seront conservés au Sénégal, avec l’appui d’un financement de la Meteoritical Society obtenu en 2023. Ce forage bénéficiera de collaborations avec le Centre International de Recherche sur les Impacts et sur Rochechouart (CIRIR). Rochechouart est la seule structure d’impact située en France. Le CIRIR, sous la houlette enthousiaste de son directeur, Philippe Lambert, a pu réaliser plusieurs forages de plusieurs centaines de mètre au total de cette structure. L’expérience lors du forage de cette structure sera précieuse pour assurer le succès d’une campagne de forage de la dépression de Vélingara.

Fig. 5 – Gauche : côte de percussion observés dans des roches calcaires (Agoudal, Maroc). Noter les striations divergentes sur les surfaces courbées des cônes de percussion. Droite : « Planar Deformation Features » dans un grain de quartz observés au microscope. Noter les fines bandes sombres parallèles distantes les unes des autres de quelques de micromètres.

David Baratoux

Références bibliographiques

Quesnel, Y., Rochette, P., Baratoux, D., Niang, C.A.B., Fall, M., Kouame, N.L, Wade, S., Kaire, M, Faye, G., Champollion, C. Potential-Field Measurements on The Velingara Candidate Impact Structure (Senegal), Journal of African Earth Science, en révision.

 

Les couleurs de Betelgeuse

Les couleurs de Betelgeuse

L’intérêt des observations prétélescopiques pour l’astrophysique moderne

 

Dagmar et Ralph Neuhäuser ont étudié les observations de couleur des étoiles consignées dans des textes anciens, notamment ceux décrivant les observations de ce que nous appelons maintenant des supernovae. Ils ont ainsi montré que l’étoile Bételgeuse a changé de couleur au cours des derniers siècles. Cette observation permet de mieux contraindre sa masse, son état évolutif, et de permettre une prédiction quant à l’époque où elle deviendra elle aussi une supernova. Ce texte, traduit en français par Fabrice Mottez pour l’Astronomie, a été publié très récemment en anglais dans la revue Astronomy & Geophysics [1].

 

« Voici que, directement au-dessus de ma tête, j’aperçus soudain une étoile étrange, dont la lumière brillait d’un éclat radieux et frappa mes yeux. Étonné, stupéfait, je suis resté immobile, les yeux fixés sur elle pendant un certain temps et j’ai remarqué qu’elle était placée près des étoiles que l’Antiquité attribuait à Cassiopée [2]. »

C’est ainsi que le jeune astronome danois Tycho Brahe (1546-1601) décrivit sa première observation de la nova stella le soir du 11 novembre 1572, après que le temps couvert eut empêché les jours précédents sa surveillance habituelle du ciel. Il y a 450 ans, la nouvelle étoile est apparue, à quelques degrés seulement du W céleste, dans la constellation de Cassiopée. Elle avait déjà été observée, le 6 novembre, par Maurolyco (Sicile, Italie), Schuler (Wittenberg, Allemagne) et en Corée. Si Brahe, qui devint plus tard astronome à la cour de l’empereur Rodolphe II à Prague, ne fut pas le premier à observer ce que nous appelons aujourd’hui la supernova 1572, il en avait bel et bien effectué les mesures les plus détaillées et les plus précises, publiées intégralement dans son ouvrage posthume Astronomiae instauratae progymnasmata : « Je commençai à mesurer sa position et sa distance par rapport aux étoiles voisines de Cassiopée et à noter avec un soin extrême ce qui était visible à l’œil concernant sa taille apparente, sa forme, sa couleur et d’autres aspects [3]. »

On pourrait regretter que les deux plus brillantes supernovae visibles à l’œil nu, celle de 1572 et celle de 1604 (cette dernière a été intensivement suivie, peu après la mort de Brahe, par son ancien assistant, Johannes Kepler), se soient produites quelques années seulement avant l’invention du télescope. Aucune supernova galactique n’a été aussi brillante depuis lors. Cependant, les observations de Tycho Brahe sur la position de la supernova et ses variations de luminosité et de couleur sont l’exemple même de la manière dont les observations non télescopiques devraient être utilisées pour acquérir de nouvelles connaissances scientifiques, autrefois comme aujourd’hui.

 

 « Elle n’était pas aussi rouge que celui de l’épaule mais plutôt de la couleur d’Aldébaran »

 

En tant qu’astronome de la cour danoise et disposant d’un budget important, Brahe pourra par la suite développer et construire des instruments toujours plus grands dans son propre atelier, afin d’améliorer continuellement la précision astrométrique de ses mesures. Cependant, en 1572 et en 1573, il dut se contenter d’un petit sextant à main pour mesurer la position de la nova. Pourtant, dans sa première publication (en 1573) sur la nouvelle étoile, il concluait avec minutie : « Il est maintenant évident […] puisque après plusieurs mois, elle n’a pas avancé d’une minute par son propre mouvement depuis l’endroit où je l’ai vue pour la première fois […] que cette nouvelle étoile ne se trouve donc ni dans la région sublunaire ni dans les orbites des sept étoiles errantes, mais dans la huitième sphère, parmi les autres étoiles fixes [4]. »

Tycho fondait ses considérations sur le système géocentrique classique, aristotélicien et ptolémaïque, même s’il était également réceptif aux théories coperniciennes (qu’il avait présentées et améliorées). Il avait bien compris qu’il n’y avait pas encore de preuve du mouvement de la Terre autour du Soleil ni de la rotation de la Terre autour de son propre axe, lesquels ne seraient démontrés que bien plus tard. Au lieu de cela, il développa un système intermédiaire, appelé aujourd’hui le système tychonique, dans lequel le Soleil et la Lune gravitent autour de la Terre, mais où les autres planètes gravitent directement autour du Soleil.

Tycho Brahe suivit méticuleusement non seulement la position de la nouvelle étoile (qui se révéla fixe – sic !), mais aussi les variations de sa luminosité : « Lorsqu’elle fut vue pour la première fois, la brillance de la nova surpassait celle de toutes les étoiles fixes, Véga et Sirius comprises. Elle était même un peu plus brillante que Jupiter, qui se levait alors au coucher du Soleil, de sorte qu’elle égalait Vénus lorsque cette planète brillait au maximum de son éclat […]. La nova est restée à peu près aussi brillante pendant presque tout le mois de novembre. Par temps clair, de nombreux observateurs la virent en plein jour, même à midi […]. La nova était aussi brillante que Vénus en novembre. En décembre, elle était à peu près égale à Jupiter [5]. »

Les mesures de positionnement par Tycho ont été utilisées au xxe siècle [6] pour déterminer les coordonnées précises de la supernova, c’est-à-dire de la grande sphère gazeuse, toujours en expansion et presque symétrique. Cela a conduit en 1952 à l’identification du reste de la supernova grâce à ses émissions en radio. En outre, les données de Brahe sur la luminosité ont pu être utilisées par Baade, en 1945, pour construire la courbe de lumière de la nova stella et la classer comme une supernova de type I (aujourd’hui Ia). Il est particulièrement profitable que Brahe ait toujours cité des objets pour les comparer à ses observations, de sorte que nous pouvons aujourd’hui les convertir en valeurs de magnitude précises.

Brahe a utilisé une technique similaire pour la variation de couleur : « En ce qui concerne la couleur de cette étoile, elle n’est pas toujours restée la même, au début on la voyait blanchâtre, et elle se rapprochait d’une lueur semblable à celle de Jupiter, mais, au fil du temps, en se réduisant, son éclat dégénéra en une rougeoyante lueur de Mars : elle était comme Aldébaran, ou celle qui est rouge dans l’épaule droite d’Orion [c’est-à-dire Bételgeuse]. Mais elle n’était pas aussi rouge que celle de l’épaule, mais plutôt de la couleur d’Aldébaran [7] » (fig. 1).

Des déterminations et des spécifications plus précises des couleurs et de leurs petites différences sont difficilement imaginables s’agissant d’observations à l’œil nu !

 

1. Les principales étoiles d’Orion pendant le grand assombrissement (tournant 2019-2020) de Bételgeuse en 2019 et 2020. Bételgeuse, alpha Orionis, « la main de la géante » en haut à gauche, est restée rouge pendant sa phase d’assombrissement. L’étoile bleue Bellatrix (gamma Orionis, « la guerrière ») est en haut à droite ; la blanc bleuâtre Rigel (bêta Orionis) est en bas à droite, et la bleue Saiph (kappa Orionis) en bas à gauche. Au milieu, on peut voir les trois étoiles bien alignées du baudrier, d’où pend l’épée d’Orion avec la fameuse nébuleuse M 42. (ESO)

 

En décembre 2019, Bételgeuse qui est la plus célèbre des étoiles supergéantes rouges apparaît moins lumineuse que d’habitude. (ESO)

Les indices de couleur et un test pratique

Aujourd’hui, nous utilisons ce que l’on appelle l’indice de couleur pour quantifier la couleur d’une étoile ou d’une planète ; il s’agit de la différence de luminosité de deux gammes de longueurs d’onde, par exemple B-V dans le bleu et le visuel, l’unité étant la magnitude (mag). De tels indices de couleur sont à nouveau qualifiés par des termes de couleur : « rouge » pour B-V ≥ 1,4 mag ; « orange » pour B-V dans l’intervalle 0,8-1,4 mag ; « jaune » pour B-V = 0,6-0,8 mag ; « blanc » pour B-V = 0,0-0,3 mag [8] ; « bleu » pour B-V ≤ 0,0 mag. Le « vert » (B-V = 0,3-0,6 mag) n’est pas discernable comme couleur d’étoile par l’œil humain, mais apparaît comme jaunâtre ou blanchâtre.

Bien que la délimitation exacte des frontières entre les gammes de couleur soit un problème quelque peu secondaire, les indices de couleur ainsi définis coïncident dans l’ensemble avec notre perception quotidienne des couleurs des étoiles, ainsi qu’avec celle des observateurs chevronnés avant l’utilisation des télescopes. Il n’est pas justifié de considérer la perception des couleurs des étoiles comme purement subjective, ni individuellement ni pour une culture entière : notre vaste compilation de toutes les études prétélescopiques connues sur la couleur des étoiles montre que, lorsque les observateurs prétélescopiques spécifiaient la couleur d’une étoile, même en utilisant un simple terme (par exemple « rouge »), cela reflétait approximativement l’indice de couleur B-V correspondant (Neuhäuser et al., en préparation).

L’astronome espagnole Pilar Ruiz-Lapuente [9] a utilisé les données de couleur de Tycho et d’autres pour en déduire les indices de couleur correspondants et classer à nouveau SN 1572 dans le type Ia (explosion thermonucléaire d’une ou deux naines blanches). En 2022, lors de la réunion annuelle de la Société européenne d’astronomie, à Valence, en Espagne, au cours de sessions spéciales célébrant le 450e anniversaire des observations de supernova par Tycho Brahe, nous avons pu montrer que des questions subtiles concernant la datation, la sursaturation à la luminosité excessive autour du pic et la conversion des termes du texte en indices numériques – en tenant également compte d’autres observations provenant d’Europe, d’Arabie et d’Asie de l’Est – peuvent conduire à des détails supplémentaires concernant le sous-type, qui permettront de déterminer si SN 1572 est une supernova de type Ia « normale » ou ayant une phase d’intensification lumineuse rapide.

En effet, un observateur expérimenté peut discerner de petites variations ou différences d’indice de couleur, même sans télescope ni autre instrument. Cela peut être facilement vérifié par exemple en comparant Bételgeuse elle-même (l’épaule orientale d’Orion) à Aldébaran (l’œil du Taureau), ainsi qu’à Pollux dans les Gémeaux et à Capella dans le Cocher ; tandis que cette dernière apparaît clairement jaunâtre à la plupart des observateurs (B-V = 0,8 mag), Pollux présente une teinte rose (B-V = 0,97 mag), Aldébaran apparaît encore plus rose (B-V = 1,48 mag) et Bételgeuse, bien sûr, est maintenant la plus rouge d’entre toutes ces étoiles (B-V = 1,78 ±0,05 mag). (La gamme d’indices de couleur donnée pour Bételgeuse provient de divers phénomènes de variabilité qui se combinent.) D’autres étoiles rougeâtres, visibles en hiver, période de l’année ou apparut la nova stella, sont observées dans Andromède (Mirach avec B-V = 1,59 mag), dans le Bélier (Hamal avec B-V = 1,16 mag), ainsi que dans la zone circumpolaire (Kochab, bêta UMi, avec B-V = 1,48 mag) ou Dubhé (alpha UMa avec seulement 1,06 mag). Antarès, dans le Scorpion, est l’étoile brillante la plus rouge (Antarès A, sa primaire, a pour indice B-V = 1,88 mag), mais elle est à peine visible pendant l’hiver boréal.

 

Diagramme de Hertzsprung-Russell

Lorsque la nouvelle étoile montra son rougeoiement maximal, Tycho Brahe nota : « Elle était comme Aldébaran, ou celle qui est rouge dans l’épaule droite d’Orion [c’est-à-dire Bételgeuse]. Mais elle n’était pas aussi rouge que celle de l’épaule, mais plutôt de la couleur d’Aldébaran. »

Ce texte n’illustre pas seulement la technique, à savoir donner des objets de comparaison, mais indique clairement que Bételgeuse était plus rouge, même légèrement, qu’Aldébaran. Aujourd’hui, Aldébaran et Bételgeuse ont des indices de couleur qui diffèrent de 0,3 mag, et cette différence est facilement perceptible à l’œil nu. Était-elle plus faible à l’époque de Tycho ? La couleur des étoiles change-t-elle donc avec le temps ?

La couleur d’une étoile dépend principalement de sa masse et de son âge. Les étoiles les plus massives sont soit bleu-blanc, soit rouges ; seules quelques-unes, en phase de transition, apparaissent jaunes ou orange. Et comme on voit peu d’étoiles dans cette phase de transition, celle-ci doit être brève. Les étoiles dont la masse est de 8 à 18 fois celle du Soleil peuvent franchir ce que nous appelons le trou des géantes jaunes [10] en une dizaine de milliers d’années, un laps de temps très court pour les astronomes, de sorte que certains changements de couleur pourraient même s’être produits au cours des derniers millénaires. Lors de cette phase particulière d’évolution, la combustion de l’hydrogène dans le noyau cesse, la fusion de l’hélium dans le noyau et la combustion de l’hydrogène dans l’enveloppe s’activent, de sorte que l’étoile quitte ce que nous appelons la séquence principale dans le diagramme de Hertzsprung-Russell (diagramme H-R), une étoile naine bleu-blanc devenant une géante rouge (fig. 2).

 

2. Le diagramme couleur-magnitude (similaire au diagramme de Hertzsprung-Russell) montre la magnitude absolue des étoiles ou leur luminosité en fonction de leur indice de couleur (ou type spectral ou température). La plupart des étoiles se trouvent sur la séquence principale (bleue, blanche, jaune, orange, rouge) correspondant à la longue phase de fusion de l’hydrogène en leur cœur, la plupart des autres sont des géantes rouges (comme Aldébaran, Arcturus et Pollux) ou des supergéantes rouges (comme Bételgeuse et Antarès). Seules quelques étoiles se situent entre la séquence principale et celle des géantes, dans cette région appelée « trou des géantes jaunes [10] ». En effet, si toutes les étoiles massives la traversent, elles le font rapidement, elles sont donc peu à le faire à un instant donné. (M. Mugrauer, AIU Jena)

 

Dans Neuhäuser R. et coll. (2022), nous avons placé sur le diagramme couleur-magnitude les 236 étoiles de magnitude apparente inférieure à 3,3 mag, c’est-à-dire jusqu’à la limite de détection des couleurs à l’œil nu (l’une des étoiles les plus faibles étant iota Draconis). Seule une douzaine d’étoiles parmi les plus massives occupent actuellement cet espace du diagramme entre le bleu-blanc et le rouge, dont Sadr (gamma Cygni) et Wezen (delta Canis Majoris). Canopus (alpha Carinae) vient d’entrer dans cette phase instable de sa vie. Bételgeuse vient de dépasser cette phase, Antarès est devenue une supergéante rouge depuis un certain temps. Aldébaran est déjà une géante rouge, mais sa masse n’est que d’une masse solaire environ, de sorte que son évolution est lente ; il en va de même pour Pollux, étoile de deux masses solaires.

D’après la position de Bételgeuse dans le diagramme couleur-magnitude, non seulement on pourrait imaginer rétrospectivement un changement de couleur rapide au cours des derniers millénaires, mais cela pourrait être confirmé et quantifié avec précision grâce à des sources historiques remontant à l’Antiquité.

La couleur des étoiles vue par Ptolémée et dans le monde méditerranéen

On trouve des relevés d’observations célestes dans de nombreuses cultures ; elles constituent des archives précieuses pour l’astronomie moderne. Toutefois, leur utilisation pour la science exige un soin particulier, qui n’était pas toujours appliqué dans le passé. Un exemple malheureux est la discussion sur le présumé changement de la couleur de Sirius, laquelle serait passée du rougeâtre dans l’Antiquité au blanc aujourd’hui (B-V = 0,01 mag). Cela n’est pas possible d’un point de vue physique (la compagne naine blanche de l’étoile binaire Sirius est bien trop froide pour s’être formée à partir d’une géante rouge au cours de l’histoire) ; une application stricte des méthodes de critique historique aurait montré que d’autres documents de l’Antiquité avaient correctement indiqué que Sirius était bleue ou blanche, ou encore panachée, c’est-à-dire qu’elle montrait des rayons de différentes couleurs (y compris rouges) en quelques secondes, et ce en raison de la forte scintillation qui la caractérise (ne pas oublier que c’est l’étoile la plus brillante dans le ciel, excepté le Soleil) [11]. Étant donné le profond fossé culturel qui nous sépare du passé lointain, la bonne compréhension des données recueillies ne va pas de soi ; un examen critique des sources nécessite un travail transdisciplinaire avec des chercheurs spécialisés en histoire, en philologie (langues) et en philosophie naturelle.

Ainsi, dans l’Almageste de Ptolémée, où toutes ces étoiles sont qualifiées, dans le grec d’origine, de hypokirros, Sirius semble être donnée comme quelque peu rougeâtre, de même que Pollux, Bételgeuse, Arcturus, Aldébaran et Antarès. Or, dans l’autre ouvrage essentiel de Ptolémée, le Tetrabiblos, seules les trois dernières étaient décrites en ces termes. Dans l’Almageste, hypokirros indique manifestement une gamme d’indices de couleur : la jaunâtre mais brillante Capella (alpha Aurigae avec B-V = 0,8 mag) n’y est pas incluse, tandis qu’y est mentionnée la légèrement plus rougeâtre Pollux (B-V = 0,97 mag), et hypokirros comprend toutes les teintes jusqu’à Antarès A (B-V = 1,88 mag). Ici, il est pertinent de noter que, selon l’interprétation physique moderne de leur emplacement dans le diagramme H-R, les autres étoiles listées (Pollux, Arcturus, Aldébaran, Antarès) n’ont pas changé significativement de couleur au cours des deux derniers millénaires. Dans le Tetrabiblos, la sélection d’étoiles semble montrer un consensus sur celles étiquetées hypokirros dans l’Antiquité, à savoir Arcturus, Aldébaran et Antarès, mais pas Bételgeuse, même si elle est maintenant à peu près aussi rouge (et même plus brillante) qu’Antarès. D’autres savants de l’Antiquité méditerranéenne donnent également des spécifications cohérentes des couleurs des étoiles : Germanicus, Manilius et Cleomedes citent quelques étoiles brillantes comme étant rouges, en particulier Antarès, ainsi qu’Aldébaran et Mirach, mais pas Bételgeuse.

 

La couleur de Bételgeuse décrite par Hygin

Pour Bételgeuse, l’Antiquité nous offre deux sources principales et indépendantes qui répondent au critère « tychonique », mentionné ci-dessus, consistant à comparer les couleurs des astres observés à celles des étoiles standard : une source latine, avec Hygin, et une source chinoise.

Dans son De Astronomia, Hygin (Caius Julius Hyginus, 67 av. J.-C.-17 apr. J.-C.) a écrit [12] dans le livre IV :

« 17. L’astre de Jupiter […] est de grosseur importante ; son apparence est semblable à celle de la Lyre.

18. L’astre du Soleil […] est de grosseur importante et couleur de feu ; il ressemble à l’étoile située sur l’épaule droite d’Orion [Bételgeuse]. […] Pour quelques-uns, c’est l’astre de Saturne ;

19. Il nous reste à parler de l’astre de Mars, que l’on appelle encore Pyroïs [c’est-à-dire le fougueux]. Il n’est bien sûr pas de taille importante, mais son apparence ressemble à une flamme. »

Jupiter, Saturne et Mars, toutes bien visibles en ce début d’année 2023, sont données et comparées tant en luminosité qu’en couleur. Mars a été décrite dans toutes les cultures comme étant rouge feu, ce que confirme son indice de couleur B-V = 1,30-1,56 mag. Le fait que la couleur de Jupiter soit comparée par Hygin à celle d’alpha Lyrae, l’étoile blanche prototypique (et également donnée comme blanchâtre dans la plupart des autres sources de l’Antiquité) est acceptable ; en effet, les étoiles et les planètes très brillantes (telle Vénus) présentent l’apparence visuelle du blanc (bien qu’en fait Jupiter ait pour indice B-V = 0,87 ±0,01 mag).

Que la couleur de la planète Saturne, avec B-V = 0,93-1,25 mag, étant jaune-orange et différenciée de celle de Mars dans toutes les relations anciennes, soit comparée par Hygin à celle de l’étoile dans l’épaule droite d’Orion, c’est-à-dire à Bételgeuse, peut donc être surprenant étant donné la couleur actuelle de cette dernière (dans la tradition gréco-babylonienne, Orion nous fait face, de sorte que l’épaule droite est clairement celle de l’est) (fig. 1).

Les planètes sont très utiles comme objets de comparaison en ce qui concerne la couleur (et la luminosité), car la composition de leur atmosphère et, par conséquent, leur couleur sont pratiquement constantes depuis longtemps. La gamme de leurs indices de couleur reflète la faible amplitude de leur variabilité ou leurs différents angles de phase par rapport au Soleil.

 

La couleur de Bételgeuse : Sima Qian, Sima Tan

Les documents de la Chine ancienne sont complètement indépendants des sources méditerranéennes. Le Tianguan Shu, qui date d’environ 100 av. J.-C., définit comme couleur des étoiles le « jaune » pour Bételgeuse, tandis que le « rouge » est lié à Antarès et le « blanc » à Sirius ; en outre, Saturne est donné comme « jaune » et Mars comme « rouge ». Le texte a été rédigé par les deux astronomes les plus éminents de la dynastie Han, Sima Qian et son père Sima Tan, qui ont formulé les bases de l’astronomie classique chinoise dans leur ouvrage principal, où l’on peut lire : « Pour [Vénus] blanche, comparer Lang [Sirius] ; pour rouge, comparer Xin [alpha Sco] ; pour jaune, comparer l’épaule gauche de Shen [alpha Ori] ; pour bleu, comparer l’épaule droite de Shen [gamma Ori] ; et pour noir ou foncé, comparer la grande étoile de Kui [bêta And]. »

À noter, s’agissant de l’orientation, que l’astérisme chinois Shen se compose essentiellement des mêmes étoiles principales que celles de l’Orion occidental, mais avec « droite » pour l’ouest et « gauche » pour l’est. Bellatrix, l’épaule « droite » de Shen, a en effet pour indice B-V = –0,14 mag, ce qui en fait un bon exemple d’étoile bleutée (fig. 2). La « grande étoile de Kui » est clairement Mirach (bêta And), donnée ici comme étoile « sombre » ou même « noire », ce qui peut sembler énigmatique ; cependant, Mirach est plutôt pâle pour passer pour une étoile rouge foncé (B-V = 1,59 mag avec V = 2,08 mag), de sorte que cette qualification est une manière de compromis afin d’inclure les cinq couleurs wuxing – selon le contexte, le terme hei peut signifier rouge foncé [13].

 

La couleur changeante de Bételgeuse

La comparaison des indications contenues dans les textes de l’Antiquité permet, comme dans ceux de Brahe, d’obtenir des résultats quantitatifs concernant les indices de couleur des étoiles à l’époque considérée. Les observations faites dans d’autres cultures au cours des siècles suivants, notamment en Arabie (le nom de Bételgeuse est dérivé de l’arabe Yad al-Jauza, pour « main de la géante »), rapprochées des données de référence de Tycho Brahe de 1573, autorisent alors à avancer une hypothèse solide : Bételgeuse a évolué du jaune-orange, il y a deux millénaires (B-V ≈ 1,0 mag), au rouge profond d’aujourd’hui (B-V = 1,78 ±0,05 mag) (fig. 3).

Alexander von Humboldt a peut-être été l’un des premiers à utiliser les textes anciens pour étudier, au milieu du xixe siècle, les éventuels changements de couleur des étoiles. Plus tard, il est devenu évident que les étoiles évoluent, par exemple les étoiles massives, qui, de naines bleu-blanc de la séquence principale, deviennent des supergéantes rouges. Cependant, un changement de couleur, dû à l’évolution séculaire, des étoiles visibles à l’œil nu n’a jamais été explicitement remarqué. En plus de Bételgeuse, une autre bonne candidate est Wezen (delta Canis Majoris, B-V = 0,70 mag), dont la position sur le diagramme H-R suggère un changement de couleur dans l’histoire ; il n’existe qu’un seul texte ancien qui le mentionne, à savoir celui de Bédouins du ixe siècle, mais ceux-ci sont connus pour être de très bons observateurs du ciel.

 

3. L’indice de couleur B-V (mag) de plusieurs étoiles en fonction du temps. Alors que la
plupart des étoiles représentées (sur la base de l’Almageste ou des Simas) montrent une couleur constante au cours des derniers millénaires, Bételgeuse (en noir) et peut-être aussi Antarès (en rouge) ont changé de couleur. Les lignes continues sont obtenues à partir du modèle théorique d’évolution des étoiles MESA MIST. Elles tiennent compte de l’extinction. Pour Bételgeuse, on a considéré une masse de 14 masses solaires. Les trois lignes pour Bételgeuse correspondent à l’indice de couleur nominal et aux barres d’erreur ; les points en noir (également avec des barres d’erreur) et les limites supérieures et inférieures correspondent aux observations historiques de Bételgeuse pendant les laps de temps indiqués. Compte tenu de l’état actuel de l’évolution d’Antarès (en haut), trois possibilités sont représentées, dont une où la couleur a évolué lentement jusqu’à il y a quelques millénaires. (figure produite par les auteurs, similaire à celle de Neuhäuser et al., 2022, MNRAS, voir doi.org/10.1093/mnras/stac1969)

Les observations historiques comme clé épistémique

Nos deux approches, la localisation astrophysique sur le diagramme H-R et la prise en compte des sources historiques, mènent à la même conclusion essentielle, à savoir la réalité du changement de couleur au cours des derniers millénaires. Cette double méthode permet d’obtenir de nouvelles informations astrophysiques.

La distance exacte de Bételgeuse n’est pas bien mesurée (s’agissant d’une supergéante, cette étoile est plus grande que sa parallaxe) ; aussi son âge, sa masse et son stade évolutif ne sont-ils pas non plus rigoureusement déterminés. Calculées théoriquement, les trajectoires évolutives sont calibrées au moyen de nombreuses observations, en particulier d’étoiles binaires. Elles montrent la variation de tous les paramètres stellaires détectables de l’extérieur (couleur, température, type spectral, luminosité, rayon, etc.) avec une fusion en cours au centre.

Notre clé épistémique présente l’avantage décisif de contraindre fortement les différents paramètres (comme la distance, la masse et l’âge): Tous ces calculs théoriques doivent être concordants avec le changement de couleur survenu en quelques millénaires. La masse de Bételgeuse, précédemment considérée comme comprise entre 13 et 20 masses solaires, est ainsi estimée à environ 14 masses solaires.

Selon le schéma évolutif retenu pour des étoiles de 14 masses solaires, Bételgeuse n’était effectivement guère plus rouge qu’Aldébaran vers 1573, lorsque Brahe a choisi ces deux étoiles pour préciser la couleur de sa supernova (B-V ≈ 1,6 mag). D’autres travaux, ainsi que les conclusions de la récente atténuation d’éclat de Bételgeuse pendant quelques mois au tournant de 2019 à 2020 [14], permettront d’améliorer encore notre compréhension de l’évolution tardive des supergéantes avant qu’elles n’explosent en supernova.

 

La recherche astronomique fondée sur les vestiges du passé

Ce nouveau champ de recherche méthodologique, exploré par des chercheurs de différents domaines à travers le monde, utilise les observations célestes passées comme clé épistémique pour des problèmes astrophysiques pouvant difficilement être résolus par ailleurs. Le laboratoire Terra-Astronomy [15] travaille sur des sources historiques, mais aussi sur des archives naturelles, tels les radio-isotopes de divers échantillons, pour étudier les phénomènes astrophysiques qui peuvent avoir affecté la Terre ou la concerner dans le futur.

Lorsqu’elle se produira, l’explostion de la supernova de Bételgeuse offrira un magnifique spectacle céleste aux habitants de notre belle planète. Elle était considérée comme imminente par certains, après le « grand assombrissement » de 2019, mais, d’après nos travaux, avec la prise en compte de la masse de l’étoile, de sa phase d’évolution actuelle et du changement de couleur survenu au cours des derniers siècles, il faudra attendre environ 1,5 million d’années pour observer cette explosion.

Les relations anciennes des phénomènes célestes sont utilisées dans d’autres domaines de l’astrophysique, notamment l’étude de l’activité solaire passée, grâce aux récits des aurores polaires et celle des novae ou supernovae galactiques (par exemple SN 1572), ainsi que le calcul des anciennes orbites de comètes [16]. Plusieurs domaines de la géophysique bénéficient également des observations anciennes ; les changements de la période de rotation de la Terre au cours des trois derniers millénaires sont déterminés grâce aux relations des éclipses solaires, également utilisées pour étudier les tremblements de terre et les éruptions volcaniques. Le passé nous en apprend beaucoup aussi sur la variabilité du climat.

 

Par  Dagmar L. Neuhäuser, Chercheuse indépendante, Merano, Italie & Ralph Neuhäuser, Institut d’astrophysique, université de Jena, Allemagne

 

Publié dans le magazine L’Astronomie Avril 2023

 

 

 

 

 

 

 

Notes :

  1. Neuhäuser D.L., Neuhäuser R. (2023): « The shifting hues of Betelgeuse », Astronomy & Geophysics 64, p. 1.38-1.42.
  2. Tycho Brahe 1602, Astronomiae instauratae progymnasmata, in : I. L. E. Dreyer 1913, Brahe’s Opera omnia, t. II, p. 308.
  3. Voir note 2.
  4. Tycho Brahe 1573, De nova stella, trad. par J. H. Walden, in Shapley & Howarth, 1929, A Source Book in Astronomy.
  5. Brahe 1602, trad. par Baade 1945, The Astrophysical Journal 102, 309.
  6. Par exemple, Böhme 1937, Astronomische Nachrichten 262, 479.
  7. De nova stella, 1573, in : Dreyer 1913, t. III, p. 106.
  8. Notons que Véga dans la constellation de la Lyre (alpha Lyr), étoile de référence des magnitudes, a par définition un indice nul : B-V = 0,0 mag.
  9. 2004, The Astrophysical Journal 612, 357.
  10. Le « trou des géantes jaunes », tant dans le diagramme couleur-magnitude que dans le diagramme de Hertzsprung-Russell est une région pauvre en étoiles en raison d’une évolution rapide de celles-ci. Elle se situe approximativement à la magnitude absolue Mv = -6 à -8 mag et à l’indice de couleur B-V = 0,5 à 1,8 mag.
  11. Cela est détaillé dans Ceragioli 1995, Journal for the History of Astronomy 26, 187.
  12. Voir Le Boeuffle éd.et trad., 1983, Hygin, l’Astronomie (latin et français), Paris, Les Belles Lettres.
  13. Pour un historique de l’astronomie chinoise ancienne, lire par exemple Bonnet-Bidaud 2017, 4 000 ans d’astronomie chinoise, Paris, Éd. Belin, « Bibliothèque scientifique », p. 58 : « La théorie des cinq éléments ».
  14. Montargès, M., Cannon, E., Lagadec, A., et al., 2021, Nature 594, 365.
  15. Pour en savoir plus sur Terra-Astronomie, consulter www.astro.uni-jena.de, rubrique Terra-Astronomy.
  16. Par exemple, 1P/Halley AD 760, Neuhäuser, D.L. et al., 2021, Icarus 364, 114278.
Rotation et magnétisme:  passé, present & futur des étoiles de type solaire

Rotation et magnétisme: passé, present & futur des étoiles de type solaire

Le Soleil est une étoile magnétique, dont l’activité intense a un impact direct sur notre société moderne et technologique. Elle est actuellement modulée par un cycle d’activité de 11 ans. En a-t-il toujours été ainsi ? Cet état cyclique du magnétisme solaire perdurera-t-il au cours de son évolution ? Afin de répondre à ces questions clés concernant notre étoile, une équipe internationale, dont des chercheurs français, a mené à bien trois études sur l’origine du magnétisme et de la rotation du Soleil et des étoiles de type solaire (via le mécanisme physique dit de dynamo fluide) dans une approche « Soleil au cours du temps ».

 

Les grandes étapes de l’existence du Soleil

Le Soleil est passé par plusieurs phases au cours de sa vie. Tout a commencé au sein du milieu interstellaire (espace entre les étoiles au sein d’une galaxie) par l’effondrement gravitationnel (contraction sous sa propre masse à la suite d’une déstabilisation) d’un nuage de poussière et de gaz neutre (principalement du dihydrogène), appelé nuage moléculaire. Les mouvements présents au sein du nuage ont alors été amplifiés durant cette contraction originelle par conservation du moment cinétique : l’ensemble a acquis et amplifié sa rotation de la même façon qu’un patineur effectuant une pirouette accélère sa vitesse de rotation en rapprochant les bras de son corps [1] (fig. 2). Une fois que la densité a suffisamment augmenté, les forces de pression se sont opposées à l’effondrement, formant ce que l’on appelle une protoétoile (du grec protos signifiant « premier », « au début de ») et dont nous proposons de suivre l’évolution rotationnelle simplifiée sur la figure 1 :

Couplage au disque : la rotation de la protoétoile est passée tout d’abord dans sa phase jeune par un plateau, c’est-à-dire un intervalle de temps où elle n’a pas varié. La rotation est demeurée constante sur plusieurs millions d’années tant que l’étoile ne se découplait pas de son disque de matière primordiale (ou disque d’accrétion). Ce dernier se forma autour d’elle par combinaison de la force gravitationnelle et de la force centrifuge durant la contraction du nuage.

Fin de la contraction : une fois le disque d’accrétion dissipé (par exemple par sublimation ou par formation de planètes), la rotation de l’étoile a de nouveau accéléré par effet de la contraction toujours en cours (phase de pré-séquence principale ou PMS) pour atteindre les vitesses de rotation les plus élevées [2]. Une fois que les conditions de température et pression en son cœur furent suffisantes pour déclencher la fusion de l’hydrogène par réactions nucléaires, l’effondrement s’est arrêté et la protoétoile est devenue ce que l’on appelle communément une étoile. Ce point critique dans l’évolution stellaire s’appelle la ZAMS (zero age main sequence).

Vers un lent ralentissement : l’étoile est alors entrée dans une phase, toujours actuelle, nommée séquence principale, où elle transforme son hydrogène en hélium. Cette phase durera 10 milliards d’années dans le cas du Soleil. Sa rotation ralentit maintenant, cette fois-ci par perte de moment cinétique via son vent de particules magnétisé. Ce scénario de l’histoire rotationnelle de notre étoile est confirmé par l’observation d’amas d’étoiles de différents âges, que nous représentons sur la figure 1 par les petits disques de couleurs avec barres d’erreur. En particulier, il a été proposé par Skumanich en 1972, puis Barnes en 2003, que le ralentissement des étoiles de type solaire suit une loi du type Ω(t) ~ t–1/2, laquelle implique qu’elles convergent toutes vers une même rotation à partir de l’âge des Hyades (soit environ 650 à 800 millions d’années). Cette relation directe entre âge et taux de rotation des étoiles de type solaire a été dénommée gyrochronologie (des mots grecs gyros, « rotation », chronos, « âge » et logos, « étude »).

 

Simulation 3D de la convection et de la dynamo d’une étoile semblable au Soleil pour comprendre l’évolution de la rotation interne et du magnétisme. En jaune/marron : vitesse radiale de la convection (montée/descente) ; en blanc : lignes de champ magnétique obtenues par extrapolation des valeurs en surface de la simulation. (A. Strugarek, Q. Noraz, A. S. Brun)

 

Figure 1. Évolution rotationnelle d’une étoile de 1 masse solaire sur les temps séculaires. Trois rotations initiales représentatives de la distribution observée dans les amas ouverts d’étoiles sont utilisées (rotateurs lents en orange, médians en bleu clair et rapides en bleu foncé). Les lignes solides représentent la rotation de l’enveloppe convective et celles pointillées de leur intérieur radiatif. Les petits cercles pleins avec barres d’erreur représentent les observations d’amas d’étoiles. Plusieurs phases rotationnelles sont identifiables : constante par ancrage à un disque de matière, en accélération par effet de contraction de l’étoile, puis décélération par freinage par vent magnétisé stellaire. La phase où toutes les courbes (quelle que soit leur vitesse initiale) convergent est la période évolutive où la gyrochronologie (la datation des étoiles par leur taux de rotation) est a priori possible, sauf si celle-ci s’arrête pour les étoiles âgées ayant un nombre de Rossby plus grand que 1 comme proposée récemment par certains auteurs. (Adapté de Ahuir et al., 2021)

 

La rotation non uniforme du Soleil

Cependant, la rotation globale d’une étoile de type solaire ne suffit pas à caractériser entièrement comment celle-ci tourne. En effet, le Soleil est constitué de plasma, qui est un état fluide de la matière [3]. Différentes parties de l’étoile peuvent alors avoir des mouvements indépendants les unes des autres, via une subtile redistribution de moment cinétique (nécessitant des simulations 3D pour leur étude et caractérisation), qui implique que tout ne tourne pas d’un bloc du centre à la surface. Ainsi, l’étoile présente un profil de rotation dite différentielle. Ces différentes vitesses s’organisent en fonction de la structure thermique de l’étoile, qui se décompose en deux grandes régions dans le cas du Soleil :

L’intérieur radiatif : après que l’énergie thermique a été créée au centre par les réactions de fusion nucléaire, elle est évacuée vers la surface de l’étoile. Dans cet intérieur profond, la température et la densité sont très élevées et cela rend la matière transparente à la lumière : l’énergie thermique est alors principalement transportée par le rayonnement (c’est-à-dire par les photons)[4]. Cette zone est dite stable et possède une rotation dite « solide »  : le taux de rotation est majoritairement constant, faisant tourner la zone interne radiative d’un seul bloc en 28 jours.

L’enveloppe convective : à mesure que l’on s’éloigne du centre de l’étoile, l’opacité de la matière au rayonnement augmente, diminuant le libre parcours moyen [5] des photons, jusqu’à atteindre une localisation où les photons ne transportent plus l’intégralité de l’énergie thermique en direction de la surface. L’interaction des photons avec la matière dépose alors assez d’énergie pour modifier localement le gradient de température au point de déclencher l’instabilité convective. Le processus de convection transporte l’énergie thermique par mouvements macroscopiques de matière dans l’enveloppe externe du Soleil. À la manière d’une casserole d’eau frémissante lorsqu’elle est suffisamment chauffée par-dessous, la matière chaude monte jusqu’à la surface, tandis que la matière froide plus dense redescend. La zone convective du Soleil s’étend depuis la surface sur 30 % du rayon de l’étoile, mais cette profondeur change en considérant des étoiles de masses différentes. Cette enveloppe s’étend plus profondément pour les étoiles moins massives, tandis qu’elle est plus fine pour des étoiles plus massives, et disparaît totalement pour les étoiles dont la masse dépasse deux fois celle du Soleil. La convection redistribue le moment cinétique, et donc modifie les vitesses de rotation au sein de cette zone. Dans le cas du Soleil, on observe par exemple que la zone équatoriale tourne en 25 jours, tandis que les régions polaires tournent en 35 jours.

L’interface entre la zone radiative en rotation solide et la zone convective externe en rotation différentielle est ainsi une région où les vitesses de rotation changent fortement. Elle est nommée en ce sens tachocline (du grec táchos et klínô, signifiant « vitesse » et « inclinaison/pente ») et est visible sur le profil de rotation solaire illustré en figure 3.

 

Figure 2. En considérant la conservation du moment cinétique L du système (humain + haltères), l’augmentation (la diminution) du moment d’inertie I, en écartant (regroupant) les bras, diminuera (augmentera) la vitesse angulaire de rotation w. (Source : fr.differbetween.com)

 

La production de champ magnétique grâce à la rotation différentielle

Cette rotation différentielle des étoiles favorise notamment la création d’un champ magnétique, grâce au processus de dynamo fluide. De manière similaire à une lampe alimentée par la dynamo d’un vélo, cette dernière permet de transformer l’énergie mécanique en énergie électromagnétique. Dans une étoile, ce processus dynamo fluide est la propriété que possède un plasma de générer par ses mouvements et par auto-induction un champ magnétique et de le maintenir. En effet, s’il n’est pas entretenu, le champ magnétique décroît : les courants électriques de la dynamo, intimement liés au champ magnétique, se dissipent en produisant de la chaleur, comme dans n’importe quel conducteur électrique résistif. On parle de dissipation du champ magnétique par diffusion ohmique. Seuls certains écoulements peuvent amplifier et maintenir un champ magnétique contre sa diffusion naturelle, ce qui est le cas des écoulements turbulents au sein du Soleil. En effet, l’association de la convection turbulente et de la rotation différentielle confère au plasma des propriétés d’étirement, de cisaillement et d’enroulement nécessaires à la mise en place de la dynamo fluide.

 

Figure 3. Rotation différentielle du Soleil. Coupe méridienne du profil de rotation de l’hémisphère Nord solaire. On y remarque la rotation solide de l’intérieur radiatif en jaune (28 jours), séparé par la tachocline (en pointillé) de l’enveloppe convective en rotation différentielle. La partie équatoriale de cette dernière (en rouge) est plus rapide (~25 jours) que celle de la région polaire (en violet/noir), pouvant ralentir jusqu’à 38 jours. Source : Thompson et al. (2003).

 

Profils radiaux de cette même rotation pour des latitudes particulières (0, 30, 45, 60 et 75°). On remarque le regroupement des différentes courbes, représentant le passage de la rotation différentielle à la rotation solide, et définissant la « tachocline ». (Garcia et al., 2007)

 

Pour décrire le champ magnétique d’une étoile, les chercheurs ont l’habitude de l’illustrer par l’intermédiaire de lignes de champ magnétique : lignes imaginaires illustrées en figures 4 et 5, indiquant le sens et l’intensité du champ magnétique et le long desquelles se déplacent en s’enroulant (mouvement dit « giratoire ») les particules chargées. On voit en figure 4 le champ magnétique représenté en deux composantes, usuellement utilisées pour le décomposer mathématiquement et l’étudier. La première est la composante dite poloïdale, contenue dans le plan de l’étoile passant par les deux pôles (plan méridien) et comparable à la géométrie des aimants que nous utilisons au quotidien (voir figure 5). La seconde est nommée composante toroïdale, en référence à la forme de « tore/donut » que prend cette dernière, et qui est contenue dans le plan perpendiculaire à l’axe de rotation. La géométrie globale du champ magnétique peut varier selon les étoiles. En particulier, elle structure et guide la couronne solaire, et par conséquent l’éjection de particules chargées, à l’origine du « vent » stellaire magnétisé visible sur la figure 4.

Figure 4. Composantes usuellement utilisées pour décrire le champ magnétique stellaire à grande échelle. À gauche : composante dite
« poloïdale », contenue dans le plan méridien de l’étoile. Le côté droit de l’étoile représente la composante dipolaire (une boucle à grande échelle), tandis que le côté gauche représente une composante multi- polaire (ici la composante hexadécapolaire avec les 4 boucles).
À droite : composante dite « toroïdale », contenue dans le plan perpendiculaire à l’axe de rotation.

 

Encadré 1. Induction et Dynamo : L’auto-induction magnétique est un phénomène d’induction où la source du champ magnétique, à l’origine d’une force électromotrice dans un circuit, est le courant électrique parcourant ce même circuit. La dynamo est un phénomène physique qui convertit de l’énergie mécanique en énergie magnétique. Dans les corps célestes, elle met en œuvre le phénomène d’induction électromagnétique par le mouvement de régions fluides conductrices qui génère un champ magnétique. Cet effet apparaît lorsque l’écoulement est assez vigoureux pour que le champ magnétique induit soit maintenu malgré la dissipation ohmique du milieu dans lequel il baigne.

 

Le vent solaire et le ralentissement de la rotation

Au travers de ce vent, l’étoile perd de la masse et donc du moment cinétique. En effet, de façon similaire au patineur écartant ses bras pour ralentir la rotation de sa pirouette, ce vent magnétisé génère un effet de bras de levier. L’amplitude de ce couple dépend notamment de l’intensité et de la géométrie du champ magnétique créé, et abaisse progressivement le taux de rotation de l’étoile, comme nous le voyons en figure 1. Une rotation plus rapide a tendance à générer un champ magnétique plus intense, et donc un freinage par vent magnétisé d’autant plus important (courbe bleu foncé). À l’inverse, une rotation plus faible est à l’origine d’un champ généralement moins intense, il est donc impacté par un freinage plus faible (courbe orange). Cette boucle de rétroaction « rotation -> dynamo -> magnétisme -> vent -> freinage -> rotation » est à l’origine de la convergence des étoiles de même masse (ici une masse solaire) vers la loi de Skumanich Ω(t) ~ t–1/2, et permet ainsi la gyrochronologie.

 

Figure 5. Illustration du champ magnétique d’un aimant usuel en utilisant de la limaille de fer. Cette limaille est alors orientée par le magnétisme, en traçant les « lignes de champ ». (Newton Henry Black, Practical Physics, 1913)

Les cycles d’activité du Soleil ont-ils toujours existé ?

Ainsi, pendant que la rotation de l’étoile diminuait sur des durées de l’ordre du milliard d’années, l’intensité globale du champ magnétique en faisait généralement de même. Cependant, la dynamo fluide a pu parfois conduire à des variabilités cycliques de l’intensité et l’orientation de ce champ sur des temps bien plus courts ! De tels changements de polarité et d’intensité ont tout d’abord pu être mis en évidence pour la dynamo terrestre, avec des traces d’inversions passées des pôles magnétiques, observées dans l’aimantation de certaines roches volcaniques et illustrées en figure 6 (lire l’encadré 2 et la note [6]).

Figure 6. Polarité géomagnétique pendant la fin de l’ère cénozoïque (de –5 millions d’années à nos jours). Les zones sombres indiquent les périodes de polarité dite « normale », tandis que les zones claires indiquent une polarité « inverse ». Les transitions noir/blanc correspondent donc au renversement global de la composante poloïdale (voir figure 4) du champ magnétique terrestre. On remarque que le dernier renversement remonte à 780 000 ans. (U.S. Geological Survey Open-File Report 03-187)

 

Sur le Soleil, des inversions similaires de l’orientation magnétique globale (dite « polarité ») sont observées de manière cyclique tous les 11 ans, et sont illustrées en figure 7 (sur la figure 4, leur effet revient à inverser le sens des flèches). On observe aussi durant ces cycles un changement de la fréquence d’apparition des structures magnétiques à sa surface, les tâches solaires, dont le nombre atteint son maximum tous les 11 ans. On parle de « maximums d’activité », et ceux-ci sont séparés par des « minimums d’activité » pendant lesquels ces structures sont absentes de la surface. Le dernier minimum solaire est survenu en décembre 2019, date depuis laquelle l’activité repart à la hausse, et atteindra un prochain pic, attendu autour de 2025. Des traces de cycles magnétiques ont également été détectées pour d’autres étoiles de type solaire, allant de quelques années à quelques dizaines d’années. Il est alors important de comprendre comment ces cycles sont contrôlés dans leur ensemble, afin de mieux comprendre l’activité du Soleil et l’impact qu’elle pourrait avoir sur nos sociétés technologiques. En effet, rappelons que la Terre baigne dans la lointaine atmosphère du Soleil, laquelle est turbulente et magnétique.

Figure 7. « Diagrammes papillon » du Soleil de 1976 à 2022. Il s’agit d’une représentation temps-latitude du champ magnétique de surface. La couleur blanc/bleu représente un champ pointant vers l’extérieur/l’intérieur du Soleil (une polarité positive/négative), mesuré ici en gauss (10 000 gauss = 1 tesla). Nous voyons différents maximums d’activité en 1981, 1991, 2000 et 2012, dessinant des formes d’ailes, et séparés par les minimums d’activité de 1976, 1986, 1996, 2008 et 2019. (Construit à partir des données KPNO, GONG, SOLIS & MDI)

 

Ainsi, allant de pair avec le changement du taux de rotation de l’étoile, le niveau d’activité magnétique de l’étoile est lui aussi modifié au cours de sa vie. On observe en effet que les étoiles jeunes tournent rapidement et sont très actives, tandis que les plus vieilles semblent moins actives et plus lentes. Cependant, la gyrochronologie a possiblement été remise en cause par les données du satellite Kepler (van Saders et al. 2016). Comme illustré en figure 1, le freinage des étoiles de type solaire s’arrêterait vers l’âge du Soleil (environ 4,5 milliards d’années), ce qui signifie que le vent ne serait plus aussi efficace pour extraire le moment cinétique des étoiles âgées. Cela pourrait s’expliquer par exemple par un changement de géométrie globale du champ magnétique solaire/stellaire, ou une modification de leur perte de masse. Il faut donc mieux caractériser la boucle complexe de rétroaction « dynamo -> magnétisme -> vent -> freinage -> rotation -> dynamo » pour comprendre l’évolution séculaire du magnétisme des étoiles de type solaire, et la possible existence d’un changement de régime magnéto-rotationnel.

 

Encadré 2. Des inversions magnétiques reproduites en laboratoire : Des scientifiques ont déjà pu reproduire en laboratoire des inversions du champ magnétique similaires à celle produite sur Terre. L’expérience Von-Karman Sodium (VKS, Monchaux et al., 2009), menée au centre CEA-Cadarache, consiste en une cuve remplie de sodium liquide (fluide conducteur), mis en mouvement entre et par deux hélices. Tout ce système était par la suite mis en rotation suivant un autre axe (précession), ce qui a permis de mettre en évidence différents états de dynamo. Suivant les vitesses mises en jeu, le processus dynamo (1) n’a pas lieu, (2) se produit en générant un champ magnétique à grande échelle et statique, (3) générant un champ magnétique variable à petite échelle et irrégulier, (4) mais pouvant aussi générer un champ magnétique dont la structure globale oscille de façon similaire à celui de la Terre. Néanmoins, la géométrie cylindrique de cette expérience reste différente de celle des étoiles que nous schématisons sur la figure 3. The Madison Experiment (Cooper et al., 2014, en cours de construction) nous permettra de continuer ces explorations en laboratoire avec la géométrie sphérique.

 

Un nombre clé pour caractériser l’évolution de la rotation et du magnétisme solaires

En ce sens, il a récemment été montré que ces changements de régimes peuvent être délimités via une quantité appelée nombre de Rossby « Ro » (lire l’encadré 3). Ce nombre permet de caractériser comment la rotation globale d’une étoile influence sa dynamique convective interne. À masse équivalente, les étoiles jeunes en rotation rapide auront un nombre de Rossby plus faible, tandis que les étoiles plus âgées tournant lentement auront un nombre de Rossby plus élevé. Si l’on regarde maintenant des étoiles de masses différentes, une étoile aura un nombre de Rossby d’autant plus élevé qu’elle est massive.

Grâce à des simulations numériques menées sur les supercalculateurs situés dans les centres français, une équipe de chercheurs français accompagnés de collègues internationaux a développé des simulations de la dynamo des étoiles de type solaire avec ce but précis (résultats publiés dans Brun et al., 2022). En changeant la masse et la rotation, et donc le nombre de Rossby des étoiles simulées (au nombre de 15), ils ont pu explorer différents états de rotation interne de l’étoile, et par conséquent de son magnétisme.

Figure 8. Profils de rotation dans une coupe méridienne de trois simulations dynamos convectives 3D d’une étoile de type solaire à différents taux de rotation globale (nombres de Rossby Ro : Ro < 0,2 (gauche), Ro ~0,2-0,7, Ro > 1 (droite)). Les régions rouges représentent un taux de rotation plus grand que la rotation globale (jaune pâle), tandis que les régions bleues représentent des taux de rotation plus faibles. (Adapté de Noraz et al., 2022b)

 

Pour illustrer cela, nous montrons sur la figure 8 trois états de rotation caractéristiques de l’étude :

– Un état de rotation quasi solide pour les rotateurs rapides : Ro faible – étoile jeunes.

– Un état de rotation dit solaire, avec un équateur rapide et des pôles lents : Ro et âges intermédiaires. Il est caractéristique du Soleil, mais aussi d’étoiles comme Ɛ Eridani ou 61 Cygni A.

– Un état de rotation dit antisolaire, avec des pôles rapides et un équateur lent : Ro élevé – étoiles potentiellement âgées. De tels profils ont déjà été détectés pour des étoiles géantes rouges, mais restent à confirmer pour des étoiles de type solaire.

 

Encadré 3. le nombre de Rossby: Le nombre de Rossby est un nombre clé pour comprendre la dynamique des systèmes en rotation. Du nom du célèbre physicien suédois, il compare l’influence du transport par la convection à celle de la force de Coriolis. Cette force est caractéristique des systèmes tournants au même titre que la force centrifuge, et a pour effet de dévier un objet en mouvement vers sa droite dans l’hémisphère Nord et vers sa gauche dans l’hémisphère Sud. Bien connue des météorologues, elle est la cause des mouvements cycloniques et anticycloniques sur Terre. Dans le Soleil, elle influence la convection de façon similaire, rendant alors ses mouvements « hélicoïdaux » (en forme de spirale ascendante ou descendante). Le nombre de Rossby sera d’autant plus faible que cette influence de la rotation est grande. Cependant, cette influence ne s’applique qu’aux plus grands mouvements, au-delà d’une extension spatiale appelée « rayon de déformation de Rossby ». Cela explique par exemple que sur Terre, les cyclones ont toujours un rayon supérieur à 100 km. Dans l’enveloppe convective solaire, ce rayon se situe entre 10 000 et 100 000 km en fonction de la profondeur, ce qui permet de délimiter les échelles de la turbulence convective ressentant, ou non, les effets de la rotation.

 

Certains profils de rotation favorisent les cycles d’activité magnétique, d’autres pas

Ce changement de profil de rotation interne affecte alors directement le comportement de la dynamo, certaines dynamos présentant alors des cycles et d’autres non. Sur la figure 9, nous montrons un diagramme de synthèse de l’état magnétique des étoiles selon leur nombre de Rossby, obtenu grâce à l’étude paramétrique publiée en 2022. On peut remarquer trois grandes classes :

– des dynamos cycliques à période courte (< 2 ans) pour les petits nombres de Rossby (en haut) ;

– des cycles longs pour les nombres de Rossby intermédiaires similaires au Soleil (au milieu) ;

– et enfin des dynamos sans cycle (« stationnaires ») pour les nombres de Rossby supérieurs à 1 (en bas).

 

Figure 9. « Diagrammes papillon » simulés pour les 3 types de dynamos. Il s’agit d’une représentation temps- latitude des polarités du champ magnétique poloïdal (en haut) et toroïdal (au milieu et en bas). La couleur rouge/bleu représente une polarité positive/négative. Trois cas de dynamos sont ainsi illustrés, soit avec un cycle magnétique court pour les plus faibles Ro (en haut), un cycle long de type solaire (au milieu) et sans cycle (en bas) pour les Ro les plus élevés. (Adapté de Brun et al., 2022)

 

« Antisolaire » : les étoiles dont le pôle tourne plus vite que l’équateur

Il semblerait donc que pour les rotateurs lents, un état de rotation antisolaire amène bien à la perte du cycle de la dynamo, qui devient alors stationnaire. Afin de confirmer cet état stationnaire dans le cas d‘une rotation antisolaire, l’équipe de chercheurs a entrepris une étude spécifique des dynamos antisolaires (publiée dans Noraz et al. 2022a), à partir d’un modèle à 2 dimensions réduit, mais plus rapide en temps de calcul, afin d’étendre l’espace des paramètres couverts.

Une partie de cette étude est résumée dans la figure 10, où sont illustrés différents chemins pour la boucle dynamo. Les conclusions confirment, comme dans le cas des simulations 3D, que les profils de rotation antisolaire donnent en majorité des dynamos sans cycle. Dans le cas solaire (ligne du bas #3), la boucle dynamo annule et renverse le champ aux pôles. On voit que les flèches du champ poloïdal se sont renversées entre la première et la dernière image de la rangée (dirigées vers le haut initialement, puis vers le bas finalement). Dans le cas antisolaire (ligne du haut #1), la boucle dynamo renforce au contraire, dans la plupart des cas, le champ aux pôles, et les flèches du champ poloïdal ne se renversent alors pas (elles restent orientées vers le haut). Néanmoins, des cycles magnétiques restent possibles avec rotations antisolaires, pour des modèles de dynamo spécifiques (ligne du milieu #2). Une détection de cycles magnétiques pour de telles étoiles (ou l’absence de cycles) serait donc une contrainte énorme pour différencier quel type de dynamo agit réellement au sein du Soleil, et prédire comment celui-ci évoluera. En attendant, il semble donc que les rotateurs lents aient une réelle probabilité d’avoir un magnétisme non cyclique.

Figure 10. Différents chemins possibles pour une dynamo stellaire. L’effet dit Ω à gauche, transforme les lignes de champ magnétique poloïdales (voir figure 4) en champ toroïdal par la rotation différentielle (cisaillement grande échelle). Son sens dépend du type de profil de rotation (solaire ou antisolaire). L’effet-α, à droite, permet de représenter l’impact de la convection hélicoïdale, transformant à l’inverse les lignes de champ toroïdales en composante poloïdale. En bas #3 : cas de référence solaire où la polarité magnétique globale est inversée à la fin de la boucle (dynamo AC). En haut #1 : cas de référence antisolaire où le cisaillement Ω est inversé, tout en considérant une paramétrisation α similaire. Cela conduit à une dynamo stationnaire sans cycle (dynamo DC). Au milieu #2 : cas antisolaire où le sens de l’effet-α est inversé, considérant alors le changement de nature de la convection à la base de l’enveloppe convective (passage d’un mouvement cyclonique à anticyclonique dans l’hémisphère Nord, et inversement pour l’hémisphère Sud). Ce cas très particulier conduit à une solution cyclique, comme dans le cas solaire. (Adapté de Noraz et al., 2022a).

 

Cela veut-il dire pour autant que la géométrie magnétique globale principale de la simulation a changé ? Par exemple, passant de la domination d’un dipôle grande échelle (structures poloïdales de droite, schématisées en haut à gauche de la figure 4) à une structure de champ magnétique petites échelles, dite multipolaire (structures poloïdales de gauche schématisées en figure 4) ? Si tel était le cas, l’efficacité du freinage de la rotation par le vent en serait fortement réduite, car la taille du bras de levier appliqué par le champ magnétique le serait tout autant. Quand l’équipe de chercheurs étudie la géométrie magnétique globale des dynamos antisolaires et la compare aux rotateurs rapides, elle ne remarque cependant pas de changement flagrant de l’amplitude du dipôle (ou des autres composantes grandes échelles du champ magnétique). En effet, la figure 11 représente l’amplitude du dipôle dans les 15 simulations en fonction du nombre de Rossby, et la compare aux observations astronomiques. On remarque bien que, pour les Ro < 1, l’accord entre simulations et observations (courbes violette et noire) est très bon, confortant les auteurs que les simulations sont robustes et réalistes.

 

Figure 11. Amplitude du champ magnétique à grande échelle en fonction du nombre de Rossby dans les 15 simulations de dynamo convective stellaire. Les différentes couleurs/formes représentent les différentes masses/taux de rotation des étoiles simulées (exprimées en unité solaire ☉). Les barres reliées aux points représentent l’amplitude de variation de ce champ à grande échelle, qui peut être forte pour les cas à dynamo cycliques. Enfin, les courbes violette et noire représentent la tendance des simulations/observations pour Ro < 1. Le carré jaune pâle représente un possible minimum magnétique où certaines étoiles pourraient être piégées un certain temps, s’écartant ainsi de la relation classique rotation-âge (ou gyrochronologie). (Adapté de Brun et al., 2022)

 

A contrario, quand on considère les cas à Ro > 1, on remarque que l’amplitude de ceux-ci ne suit pas la même tendance, ni même une baisse encore plus abrupte de l’amplitude du dipôle. Bien au contraire, on voit une possible remontée du champ magnétique dipolaire. Le dipôle magnétique de la dynamo stationnaire au sein des rotateurs lents n’est donc pas négligeable ; au contraire, il semble même dominant. Dès lors, il semble peu probable que ce soit la disparition du dipôle magnétique qui mette en pause le ralentissement des étoiles suggéré par l’étude Kepler citée plus haut. Il est cependant intéressant de noter sur la figure 11 l’existence possible d’un minimum local du champ magnétique grande échelle vers l’âge du Soleil, indiqué par la petite boîte jaune. On peut donc se poser la question de savoir si des étoiles pourraient y rester « coincées », expliquant ainsi leur inefficacité à ralentir selon la loi de Skumanich en Ω(t) ~ t–1/2 (c.-à-d. la rotation de l’étoile ralentit comme l’inverse de la racine carrée du temps : plus l’étoile est âgée, moins elle tourne vite sur elle-même). Mais une fois ce minimum passé, les étoiles retrouvent a priori un freinage plus intense. La durée de cette phase de « calage/décrochage  » (stalling en anglais) dépend de la forme du minimum, soit pour faire simple en forme de U ou de V. Cela peut avoir des conséquences sur l’âge des étoiles vieilles auquel on devrait ajouter cette période de stalling, pour corriger la gyrochronologie.

 

Figure 12. Représentation des étoiles candidates au profil antisolaire dans les observations Kepler, après filtrage et diagnostic en nombre de Rossby. On y retrouve notamment KIC 7189915, une étoile très similaire au Soleil, ainsi que KIC 12117868, une cible intéressante pour l’astéro-sismologie. (Adapté de Noraz et al., 2022b)

 

Dans ce contexte, l’équipe de chercheurs a entrepris l’identification d’étoiles candidates dans les données du satellite Kepler, dont le profil de rotation pourrait être antisolaire, afin de confirmer dans cette première étape l’existence de ce profil dans les vieilles étoiles de type solaire (Noraz et al., 2022b). La figure 12 représente ainsi un diagramme de la température de surface (effective) en fonction de la période de rotation en jour. Les étoiles de l’échantillon Kepler ayant un grand nombre de Rossby observationnel, et donc susceptibles de posséder une rotation antisolaire, sont marqués d’un symbole vert. Il s’agira maintenant de dédier un programme d’observations pour vérifier leur possible profil de rotation inversé, mais aussi pour caractériser leur champ magnétique. Cela nous apportera alors des informations sur la forme exacte du minimum de la figure 11, et donc sur le potentiel écart à la gyrochronologie illustré en figure 1. Cela permettra enfin de suivre leur activité magnétique sur le long terme, afin de savoir si elle est stationnaire ou cyclique.

Ce scénario magnéto-rotationnel des étoiles guidera en partie la mission spatiale de l’ESA PLATO pour lequel la France est fortement impliquée. En effet, la compréhension du magnétisme et de ses variabilités améliore la détection d’exoplanètes, souvent perturbée par l’activité magnétique de l’étoile hôte. L’étude sur le magnétisme des étoiles permet non seulement de reconstruire leur histoire magnéto-rotationnelle, mais peut également aider à mieux caractériser les nombreuses exoplanètes présentes dans notre environnement proche, et ainsi mieux contraindre nos connaissances sur les possibilités de vie au sein de notre Galaxie.

 

Par Quentin NORAZ, Allan Sacha BRUN & Antoine STRUGAREK, DAp-AIM/OSUPS

Publié dans le magazine L’Astronomie Juin 2023

 

 

 

 

 

 

Notes :

  1. Le moment cinétique est une grandeur utilisée pour décrire l’état général de rotation d’un système physique. Ainsi, comme la quantité de mouvement (« l’élan ») d’un système en translation uniforme ne sera pas modifiée si aucune force nette ne lui est appliquée (3e loi de Newton : principe d’inertie), le moment cinétique d’un système en rotation n’est pas modifié si aucun couple ne lui est appliqué. En considérant une conservation de cette grandeur, la vitesse de rotation peut être modifiée de façon caractéristique si la répartition des masses autour de l’axe de rotation l’est aussi (voir l’exemple de la pirouette du patineur et illustration en figure 2).
  2. La sublimation est le changement d’état d’un corps depuis l’état solide vers l’état gazeux, sans passer par l’état liquide.
  3. Le plasma est considéré comme le quatrième état de la matière, en plus de solide, liquide et gazeux. Il s’agit plus exactement d’un gaz ionisé, c’est-à-dire au sein duquel les électrons ont assez d’énergie pour se séparer des atomes. Au sein du Soleil, cet état est atteint grâce aux conditions extrêmes de température en son sein, allant de quelques milliers de degrés à sa surface, jusqu’à plusieurs millions en son centre.
  4. Le transport de l’énergie thermique par conduction (contact direct entre un corps chaud et un corps froid) est négligeable au sein des étoiles de type solaire.
  5. Le libre parcours moyen est la distance moyenne parcourue par une particule ou un photon, entre deux impacts successifs.
  6. Lorsque la croûte terrestre se forme au niveau d’une dorsale océanique par remontée de magma, certaines roches de ce dernier enregistrent l’aimantation globale présente lors de leur solidification. Les mouvements tectoniques engendrés vont alors éloigner progressivement ces roches de la dorsale par formation de nouvelles roches plus récentes, et permettent ainsi de remonter l’histoire du champ magnétique terrestre à mesure que l’on regarde des roches de plus en plus éloignées de la dorsale.

 

Références :

■ Noraz Q., Breton S. N., Brun A. S., García R. A., Strugarek A., Santos A. R. G., Mathur S., Amard L., 2022, Astronomy & Astrophysics, 667, A50, 2022.

■ Brun A. S., Strugarek A., Noraz Q., Perri B., Varela J., Augustson K., Charbonneau P., Toomre J., 2022, Astrophysical Journal, 926, 21, 2022.

■ Noraz Q., Brun A. S., Strugarek A., Depambour G., Astronomy & Astrophysics, 658, A144, 2022.

■ Ahuir J., Strugarek A., Brun A.-S., Mathis S., Astronomy & Astrophysics, 650, A126, 2021.

■ Strugarek A. et al., Science, 357, 185, 2017.

■ Van Saders J. L. et al., Nature , 529, 2016.

■ Thompson M. J. et al., « The Internal Rotation of the Sun », Annual Review of Astronomy and Astrophysics, 41, 2003, 599.

■ Garcia R. A. et al., « Tracking Solar Gravity Modes: The Dynamics of the Solar Core », Science, 316, 2007, 1591.

■ Monchaux R. et al., Physics of Fluids 21, 035108, 2009.

■ C. M. Cooper et al., Physics of Plasmas 21, 013505, 2014.

■ Newton Henry Black, Practical Physics, 1913.

 

 

 

 

 

Instagram
YouTube
YouTube
Follow by Email