LE MAGAZINE DES SCIENCES DE L’UNIVERS EN AFRIQUE

L’intérêt des observations prétélescopiques pour l’astrophysique moderne

 

Dagmar et Ralph Neuhäuser ont étudié les observations de couleur des étoiles consignées dans des textes anciens, notamment ceux décrivant les observations de ce que nous appelons maintenant des supernovae. Ils ont ainsi montré que l’étoile Bételgeuse a changé de couleur au cours des derniers siècles. Cette observation permet de mieux contraindre sa masse, son état évolutif, et de permettre une prédiction quant à l’époque où elle deviendra elle aussi une supernova. Ce texte, traduit en français par Fabrice Mottez pour l’Astronomie, a été publié très récemment en anglais dans la revue Astronomy & Geophysics [1].

 

« Voici que, directement au-dessus de ma tête, j’aperçus soudain une étoile étrange, dont la lumière brillait d’un éclat radieux et frappa mes yeux. Étonné, stupéfait, je suis resté immobile, les yeux fixés sur elle pendant un certain temps et j’ai remarqué qu’elle était placée près des étoiles que l’Antiquité attribuait à Cassiopée [2]. »

C’est ainsi que le jeune astronome danois Tycho Brahe (1546-1601) décrivit sa première observation de la nova stella le soir du 11 novembre 1572, après que le temps couvert eut empêché les jours précédents sa surveillance habituelle du ciel. Il y a 450 ans, la nouvelle étoile est apparue, à quelques degrés seulement du W céleste, dans la constellation de Cassiopée. Elle avait déjà été observée, le 6 novembre, par Maurolyco (Sicile, Italie), Schuler (Wittenberg, Allemagne) et en Corée. Si Brahe, qui devint plus tard astronome à la cour de l’empereur Rodolphe II à Prague, ne fut pas le premier à observer ce que nous appelons aujourd’hui la supernova 1572, il en avait bel et bien effectué les mesures les plus détaillées et les plus précises, publiées intégralement dans son ouvrage posthume Astronomiae instauratae progymnasmata : « Je commençai à mesurer sa position et sa distance par rapport aux étoiles voisines de Cassiopée et à noter avec un soin extrême ce qui était visible à l’œil concernant sa taille apparente, sa forme, sa couleur et d’autres aspects [3]. »

On pourrait regretter que les deux plus brillantes supernovae visibles à l’œil nu, celle de 1572 et celle de 1604 (cette dernière a été intensivement suivie, peu après la mort de Brahe, par son ancien assistant, Johannes Kepler), se soient produites quelques années seulement avant l’invention du télescope. Aucune supernova galactique n’a été aussi brillante depuis lors. Cependant, les observations de Tycho Brahe sur la position de la supernova et ses variations de luminosité et de couleur sont l’exemple même de la manière dont les observations non télescopiques devraient être utilisées pour acquérir de nouvelles connaissances scientifiques, autrefois comme aujourd’hui.

 

 « Elle n’était pas aussi rouge que celui de l’épaule mais plutôt de la couleur d’Aldébaran »

 

En tant qu’astronome de la cour danoise et disposant d’un budget important, Brahe pourra par la suite développer et construire des instruments toujours plus grands dans son propre atelier, afin d’améliorer continuellement la précision astrométrique de ses mesures. Cependant, en 1572 et en 1573, il dut se contenter d’un petit sextant à main pour mesurer la position de la nova. Pourtant, dans sa première publication (en 1573) sur la nouvelle étoile, il concluait avec minutie : « Il est maintenant évident […] puisque après plusieurs mois, elle n’a pas avancé d’une minute par son propre mouvement depuis l’endroit où je l’ai vue pour la première fois […] que cette nouvelle étoile ne se trouve donc ni dans la région sublunaire ni dans les orbites des sept étoiles errantes, mais dans la huitième sphère, parmi les autres étoiles fixes [4]. »

Tycho fondait ses considérations sur le système géocentrique classique, aristotélicien et ptolémaïque, même s’il était également réceptif aux théories coperniciennes (qu’il avait présentées et améliorées). Il avait bien compris qu’il n’y avait pas encore de preuve du mouvement de la Terre autour du Soleil ni de la rotation de la Terre autour de son propre axe, lesquels ne seraient démontrés que bien plus tard. Au lieu de cela, il développa un système intermédiaire, appelé aujourd’hui le système tychonique, dans lequel le Soleil et la Lune gravitent autour de la Terre, mais où les autres planètes gravitent directement autour du Soleil.

Tycho Brahe suivit méticuleusement non seulement la position de la nouvelle étoile (qui se révéla fixe – sic !), mais aussi les variations de sa luminosité : « Lorsqu’elle fut vue pour la première fois, la brillance de la nova surpassait celle de toutes les étoiles fixes, Véga et Sirius comprises. Elle était même un peu plus brillante que Jupiter, qui se levait alors au coucher du Soleil, de sorte qu’elle égalait Vénus lorsque cette planète brillait au maximum de son éclat […]. La nova est restée à peu près aussi brillante pendant presque tout le mois de novembre. Par temps clair, de nombreux observateurs la virent en plein jour, même à midi […]. La nova était aussi brillante que Vénus en novembre. En décembre, elle était à peu près égale à Jupiter [5]. »

Les mesures de positionnement par Tycho ont été utilisées au xxe siècle [6] pour déterminer les coordonnées précises de la supernova, c’est-à-dire de la grande sphère gazeuse, toujours en expansion et presque symétrique. Cela a conduit en 1952 à l’identification du reste de la supernova grâce à ses émissions en radio. En outre, les données de Brahe sur la luminosité ont pu être utilisées par Baade, en 1945, pour construire la courbe de lumière de la nova stella et la classer comme une supernova de type I (aujourd’hui Ia). Il est particulièrement profitable que Brahe ait toujours cité des objets pour les comparer à ses observations, de sorte que nous pouvons aujourd’hui les convertir en valeurs de magnitude précises.

Brahe a utilisé une technique similaire pour la variation de couleur : « En ce qui concerne la couleur de cette étoile, elle n’est pas toujours restée la même, au début on la voyait blanchâtre, et elle se rapprochait d’une lueur semblable à celle de Jupiter, mais, au fil du temps, en se réduisant, son éclat dégénéra en une rougeoyante lueur de Mars : elle était comme Aldébaran, ou celle qui est rouge dans l’épaule droite d’Orion [c’est-à-dire Bételgeuse]. Mais elle n’était pas aussi rouge que celle de l’épaule, mais plutôt de la couleur d’Aldébaran [7] » (fig. 1).

Des déterminations et des spécifications plus précises des couleurs et de leurs petites différences sont difficilement imaginables s’agissant d’observations à l’œil nu !

 

1. Les principales étoiles d’Orion pendant le grand assombrissement (tournant 2019-2020) de Bételgeuse en 2019 et 2020. Bételgeuse, alpha Orionis, « la main de la géante » en haut à gauche, est restée rouge pendant sa phase d’assombrissement. L’étoile bleue Bellatrix (gamma Orionis, « la guerrière ») est en haut à droite ; la blanc bleuâtre Rigel (bêta Orionis) est en bas à droite, et la bleue Saiph (kappa Orionis) en bas à gauche. Au milieu, on peut voir les trois étoiles bien alignées du baudrier, d’où pend l’épée d’Orion avec la fameuse nébuleuse M 42. (ESO)

 

En décembre 2019, Bételgeuse qui est la plus célèbre des étoiles supergéantes rouges apparaît moins lumineuse que d’habitude. (ESO)

Les indices de couleur et un test pratique

Aujourd’hui, nous utilisons ce que l’on appelle l’indice de couleur pour quantifier la couleur d’une étoile ou d’une planète ; il s’agit de la différence de luminosité de deux gammes de longueurs d’onde, par exemple B-V dans le bleu et le visuel, l’unité étant la magnitude (mag). De tels indices de couleur sont à nouveau qualifiés par des termes de couleur : « rouge » pour B-V ≥ 1,4 mag ; « orange » pour B-V dans l’intervalle 0,8-1,4 mag ; « jaune » pour B-V = 0,6-0,8 mag ; « blanc » pour B-V = 0,0-0,3 mag [8] ; « bleu » pour B-V ≤ 0,0 mag. Le « vert » (B-V = 0,3-0,6 mag) n’est pas discernable comme couleur d’étoile par l’œil humain, mais apparaît comme jaunâtre ou blanchâtre.

Bien que la délimitation exacte des frontières entre les gammes de couleur soit un problème quelque peu secondaire, les indices de couleur ainsi définis coïncident dans l’ensemble avec notre perception quotidienne des couleurs des étoiles, ainsi qu’avec celle des observateurs chevronnés avant l’utilisation des télescopes. Il n’est pas justifié de considérer la perception des couleurs des étoiles comme purement subjective, ni individuellement ni pour une culture entière : notre vaste compilation de toutes les études prétélescopiques connues sur la couleur des étoiles montre que, lorsque les observateurs prétélescopiques spécifiaient la couleur d’une étoile, même en utilisant un simple terme (par exemple « rouge »), cela reflétait approximativement l’indice de couleur B-V correspondant (Neuhäuser et al., en préparation).

L’astronome espagnole Pilar Ruiz-Lapuente [9] a utilisé les données de couleur de Tycho et d’autres pour en déduire les indices de couleur correspondants et classer à nouveau SN 1572 dans le type Ia (explosion thermonucléaire d’une ou deux naines blanches). En 2022, lors de la réunion annuelle de la Société européenne d’astronomie, à Valence, en Espagne, au cours de sessions spéciales célébrant le 450e anniversaire des observations de supernova par Tycho Brahe, nous avons pu montrer que des questions subtiles concernant la datation, la sursaturation à la luminosité excessive autour du pic et la conversion des termes du texte en indices numériques – en tenant également compte d’autres observations provenant d’Europe, d’Arabie et d’Asie de l’Est – peuvent conduire à des détails supplémentaires concernant le sous-type, qui permettront de déterminer si SN 1572 est une supernova de type Ia « normale » ou ayant une phase d’intensification lumineuse rapide.

En effet, un observateur expérimenté peut discerner de petites variations ou différences d’indice de couleur, même sans télescope ni autre instrument. Cela peut être facilement vérifié par exemple en comparant Bételgeuse elle-même (l’épaule orientale d’Orion) à Aldébaran (l’œil du Taureau), ainsi qu’à Pollux dans les Gémeaux et à Capella dans le Cocher ; tandis que cette dernière apparaît clairement jaunâtre à la plupart des observateurs (B-V = 0,8 mag), Pollux présente une teinte rose (B-V = 0,97 mag), Aldébaran apparaît encore plus rose (B-V = 1,48 mag) et Bételgeuse, bien sûr, est maintenant la plus rouge d’entre toutes ces étoiles (B-V = 1,78 ±0,05 mag). (La gamme d’indices de couleur donnée pour Bételgeuse provient de divers phénomènes de variabilité qui se combinent.) D’autres étoiles rougeâtres, visibles en hiver, période de l’année ou apparut la nova stella, sont observées dans Andromède (Mirach avec B-V = 1,59 mag), dans le Bélier (Hamal avec B-V = 1,16 mag), ainsi que dans la zone circumpolaire (Kochab, bêta UMi, avec B-V = 1,48 mag) ou Dubhé (alpha UMa avec seulement 1,06 mag). Antarès, dans le Scorpion, est l’étoile brillante la plus rouge (Antarès A, sa primaire, a pour indice B-V = 1,88 mag), mais elle est à peine visible pendant l’hiver boréal.

 

Diagramme de Hertzsprung-Russell

Lorsque la nouvelle étoile montra son rougeoiement maximal, Tycho Brahe nota : « Elle était comme Aldébaran, ou celle qui est rouge dans l’épaule droite d’Orion [c’est-à-dire Bételgeuse]. Mais elle n’était pas aussi rouge que celle de l’épaule, mais plutôt de la couleur d’Aldébaran. »

Ce texte n’illustre pas seulement la technique, à savoir donner des objets de comparaison, mais indique clairement que Bételgeuse était plus rouge, même légèrement, qu’Aldébaran. Aujourd’hui, Aldébaran et Bételgeuse ont des indices de couleur qui diffèrent de 0,3 mag, et cette différence est facilement perceptible à l’œil nu. Était-elle plus faible à l’époque de Tycho ? La couleur des étoiles change-t-elle donc avec le temps ?

La couleur d’une étoile dépend principalement de sa masse et de son âge. Les étoiles les plus massives sont soit bleu-blanc, soit rouges ; seules quelques-unes, en phase de transition, apparaissent jaunes ou orange. Et comme on voit peu d’étoiles dans cette phase de transition, celle-ci doit être brève. Les étoiles dont la masse est de 8 à 18 fois celle du Soleil peuvent franchir ce que nous appelons le trou des géantes jaunes [10] en une dizaine de milliers d’années, un laps de temps très court pour les astronomes, de sorte que certains changements de couleur pourraient même s’être produits au cours des derniers millénaires. Lors de cette phase particulière d’évolution, la combustion de l’hydrogène dans le noyau cesse, la fusion de l’hélium dans le noyau et la combustion de l’hydrogène dans l’enveloppe s’activent, de sorte que l’étoile quitte ce que nous appelons la séquence principale dans le diagramme de Hertzsprung-Russell (diagramme H-R), une étoile naine bleu-blanc devenant une géante rouge (fig. 2).

 

2. Le diagramme couleur-magnitude (similaire au diagramme de Hertzsprung-Russell) montre la magnitude absolue des étoiles ou leur luminosité en fonction de leur indice de couleur (ou type spectral ou température). La plupart des étoiles se trouvent sur la séquence principale (bleue, blanche, jaune, orange, rouge) correspondant à la longue phase de fusion de l’hydrogène en leur cœur, la plupart des autres sont des géantes rouges (comme Aldébaran, Arcturus et Pollux) ou des supergéantes rouges (comme Bételgeuse et Antarès). Seules quelques étoiles se situent entre la séquence principale et celle des géantes, dans cette région appelée « trou des géantes jaunes [10] ». En effet, si toutes les étoiles massives la traversent, elles le font rapidement, elles sont donc peu à le faire à un instant donné. (M. Mugrauer, AIU Jena)

 

Dans Neuhäuser R. et coll. (2022), nous avons placé sur le diagramme couleur-magnitude les 236 étoiles de magnitude apparente inférieure à 3,3 mag, c’est-à-dire jusqu’à la limite de détection des couleurs à l’œil nu (l’une des étoiles les plus faibles étant iota Draconis). Seule une douzaine d’étoiles parmi les plus massives occupent actuellement cet espace du diagramme entre le bleu-blanc et le rouge, dont Sadr (gamma Cygni) et Wezen (delta Canis Majoris). Canopus (alpha Carinae) vient d’entrer dans cette phase instable de sa vie. Bételgeuse vient de dépasser cette phase, Antarès est devenue une supergéante rouge depuis un certain temps. Aldébaran est déjà une géante rouge, mais sa masse n’est que d’une masse solaire environ, de sorte que son évolution est lente ; il en va de même pour Pollux, étoile de deux masses solaires.

D’après la position de Bételgeuse dans le diagramme couleur-magnitude, non seulement on pourrait imaginer rétrospectivement un changement de couleur rapide au cours des derniers millénaires, mais cela pourrait être confirmé et quantifié avec précision grâce à des sources historiques remontant à l’Antiquité.

La couleur des étoiles vue par Ptolémée et dans le monde méditerranéen

On trouve des relevés d’observations célestes dans de nombreuses cultures ; elles constituent des archives précieuses pour l’astronomie moderne. Toutefois, leur utilisation pour la science exige un soin particulier, qui n’était pas toujours appliqué dans le passé. Un exemple malheureux est la discussion sur le présumé changement de la couleur de Sirius, laquelle serait passée du rougeâtre dans l’Antiquité au blanc aujourd’hui (B-V = 0,01 mag). Cela n’est pas possible d’un point de vue physique (la compagne naine blanche de l’étoile binaire Sirius est bien trop froide pour s’être formée à partir d’une géante rouge au cours de l’histoire) ; une application stricte des méthodes de critique historique aurait montré que d’autres documents de l’Antiquité avaient correctement indiqué que Sirius était bleue ou blanche, ou encore panachée, c’est-à-dire qu’elle montrait des rayons de différentes couleurs (y compris rouges) en quelques secondes, et ce en raison de la forte scintillation qui la caractérise (ne pas oublier que c’est l’étoile la plus brillante dans le ciel, excepté le Soleil) [11]. Étant donné le profond fossé culturel qui nous sépare du passé lointain, la bonne compréhension des données recueillies ne va pas de soi ; un examen critique des sources nécessite un travail transdisciplinaire avec des chercheurs spécialisés en histoire, en philologie (langues) et en philosophie naturelle.

Ainsi, dans l’Almageste de Ptolémée, où toutes ces étoiles sont qualifiées, dans le grec d’origine, de hypokirros, Sirius semble être donnée comme quelque peu rougeâtre, de même que Pollux, Bételgeuse, Arcturus, Aldébaran et Antarès. Or, dans l’autre ouvrage essentiel de Ptolémée, le Tetrabiblos, seules les trois dernières étaient décrites en ces termes. Dans l’Almageste, hypokirros indique manifestement une gamme d’indices de couleur : la jaunâtre mais brillante Capella (alpha Aurigae avec B-V = 0,8 mag) n’y est pas incluse, tandis qu’y est mentionnée la légèrement plus rougeâtre Pollux (B-V = 0,97 mag), et hypokirros comprend toutes les teintes jusqu’à Antarès A (B-V = 1,88 mag). Ici, il est pertinent de noter que, selon l’interprétation physique moderne de leur emplacement dans le diagramme H-R, les autres étoiles listées (Pollux, Arcturus, Aldébaran, Antarès) n’ont pas changé significativement de couleur au cours des deux derniers millénaires. Dans le Tetrabiblos, la sélection d’étoiles semble montrer un consensus sur celles étiquetées hypokirros dans l’Antiquité, à savoir Arcturus, Aldébaran et Antarès, mais pas Bételgeuse, même si elle est maintenant à peu près aussi rouge (et même plus brillante) qu’Antarès. D’autres savants de l’Antiquité méditerranéenne donnent également des spécifications cohérentes des couleurs des étoiles : Germanicus, Manilius et Cleomedes citent quelques étoiles brillantes comme étant rouges, en particulier Antarès, ainsi qu’Aldébaran et Mirach, mais pas Bételgeuse.

 

La couleur de Bételgeuse décrite par Hygin

Pour Bételgeuse, l’Antiquité nous offre deux sources principales et indépendantes qui répondent au critère « tychonique », mentionné ci-dessus, consistant à comparer les couleurs des astres observés à celles des étoiles standard : une source latine, avec Hygin, et une source chinoise.

Dans son De Astronomia, Hygin (Caius Julius Hyginus, 67 av. J.-C.-17 apr. J.-C.) a écrit [12] dans le livre IV :

« 17. L’astre de Jupiter […] est de grosseur importante ; son apparence est semblable à celle de la Lyre.

18. L’astre du Soleil […] est de grosseur importante et couleur de feu ; il ressemble à l’étoile située sur l’épaule droite d’Orion [Bételgeuse]. […] Pour quelques-uns, c’est l’astre de Saturne ;

19. Il nous reste à parler de l’astre de Mars, que l’on appelle encore Pyroïs [c’est-à-dire le fougueux]. Il n’est bien sûr pas de taille importante, mais son apparence ressemble à une flamme. »

Jupiter, Saturne et Mars, toutes bien visibles en ce début d’année 2023, sont données et comparées tant en luminosité qu’en couleur. Mars a été décrite dans toutes les cultures comme étant rouge feu, ce que confirme son indice de couleur B-V = 1,30-1,56 mag. Le fait que la couleur de Jupiter soit comparée par Hygin à celle d’alpha Lyrae, l’étoile blanche prototypique (et également donnée comme blanchâtre dans la plupart des autres sources de l’Antiquité) est acceptable ; en effet, les étoiles et les planètes très brillantes (telle Vénus) présentent l’apparence visuelle du blanc (bien qu’en fait Jupiter ait pour indice B-V = 0,87 ±0,01 mag).

Que la couleur de la planète Saturne, avec B-V = 0,93-1,25 mag, étant jaune-orange et différenciée de celle de Mars dans toutes les relations anciennes, soit comparée par Hygin à celle de l’étoile dans l’épaule droite d’Orion, c’est-à-dire à Bételgeuse, peut donc être surprenant étant donné la couleur actuelle de cette dernière (dans la tradition gréco-babylonienne, Orion nous fait face, de sorte que l’épaule droite est clairement celle de l’est) (fig. 1).

Les planètes sont très utiles comme objets de comparaison en ce qui concerne la couleur (et la luminosité), car la composition de leur atmosphère et, par conséquent, leur couleur sont pratiquement constantes depuis longtemps. La gamme de leurs indices de couleur reflète la faible amplitude de leur variabilité ou leurs différents angles de phase par rapport au Soleil.

 

La couleur de Bételgeuse : Sima Qian, Sima Tan

Les documents de la Chine ancienne sont complètement indépendants des sources méditerranéennes. Le Tianguan Shu, qui date d’environ 100 av. J.-C., définit comme couleur des étoiles le « jaune » pour Bételgeuse, tandis que le « rouge » est lié à Antarès et le « blanc » à Sirius ; en outre, Saturne est donné comme « jaune » et Mars comme « rouge ». Le texte a été rédigé par les deux astronomes les plus éminents de la dynastie Han, Sima Qian et son père Sima Tan, qui ont formulé les bases de l’astronomie classique chinoise dans leur ouvrage principal, où l’on peut lire : « Pour [Vénus] blanche, comparer Lang [Sirius] ; pour rouge, comparer Xin [alpha Sco] ; pour jaune, comparer l’épaule gauche de Shen [alpha Ori] ; pour bleu, comparer l’épaule droite de Shen [gamma Ori] ; et pour noir ou foncé, comparer la grande étoile de Kui [bêta And]. »

À noter, s’agissant de l’orientation, que l’astérisme chinois Shen se compose essentiellement des mêmes étoiles principales que celles de l’Orion occidental, mais avec « droite » pour l’ouest et « gauche » pour l’est. Bellatrix, l’épaule « droite » de Shen, a en effet pour indice B-V = –0,14 mag, ce qui en fait un bon exemple d’étoile bleutée (fig. 2). La « grande étoile de Kui » est clairement Mirach (bêta And), donnée ici comme étoile « sombre » ou même « noire », ce qui peut sembler énigmatique ; cependant, Mirach est plutôt pâle pour passer pour une étoile rouge foncé (B-V = 1,59 mag avec V = 2,08 mag), de sorte que cette qualification est une manière de compromis afin d’inclure les cinq couleurs wuxing – selon le contexte, le terme hei peut signifier rouge foncé [13].

 

La couleur changeante de Bételgeuse

La comparaison des indications contenues dans les textes de l’Antiquité permet, comme dans ceux de Brahe, d’obtenir des résultats quantitatifs concernant les indices de couleur des étoiles à l’époque considérée. Les observations faites dans d’autres cultures au cours des siècles suivants, notamment en Arabie (le nom de Bételgeuse est dérivé de l’arabe Yad al-Jauza, pour « main de la géante »), rapprochées des données de référence de Tycho Brahe de 1573, autorisent alors à avancer une hypothèse solide : Bételgeuse a évolué du jaune-orange, il y a deux millénaires (B-V ≈ 1,0 mag), au rouge profond d’aujourd’hui (B-V = 1,78 ±0,05 mag) (fig. 3).

Alexander von Humboldt a peut-être été l’un des premiers à utiliser les textes anciens pour étudier, au milieu du xixe siècle, les éventuels changements de couleur des étoiles. Plus tard, il est devenu évident que les étoiles évoluent, par exemple les étoiles massives, qui, de naines bleu-blanc de la séquence principale, deviennent des supergéantes rouges. Cependant, un changement de couleur, dû à l’évolution séculaire, des étoiles visibles à l’œil nu n’a jamais été explicitement remarqué. En plus de Bételgeuse, une autre bonne candidate est Wezen (delta Canis Majoris, B-V = 0,70 mag), dont la position sur le diagramme H-R suggère un changement de couleur dans l’histoire ; il n’existe qu’un seul texte ancien qui le mentionne, à savoir celui de Bédouins du ixe siècle, mais ceux-ci sont connus pour être de très bons observateurs du ciel.

 

3. L’indice de couleur B-V (mag) de plusieurs étoiles en fonction du temps. Alors que la
plupart des étoiles représentées (sur la base de l’Almageste ou des Simas) montrent une couleur constante au cours des derniers millénaires, Bételgeuse (en noir) et peut-être aussi Antarès (en rouge) ont changé de couleur. Les lignes continues sont obtenues à partir du modèle théorique d’évolution des étoiles MESA MIST. Elles tiennent compte de l’extinction. Pour Bételgeuse, on a considéré une masse de 14 masses solaires. Les trois lignes pour Bételgeuse correspondent à l’indice de couleur nominal et aux barres d’erreur ; les points en noir (également avec des barres d’erreur) et les limites supérieures et inférieures correspondent aux observations historiques de Bételgeuse pendant les laps de temps indiqués. Compte tenu de l’état actuel de l’évolution d’Antarès (en haut), trois possibilités sont représentées, dont une où la couleur a évolué lentement jusqu’à il y a quelques millénaires. (figure produite par les auteurs, similaire à celle de Neuhäuser et al., 2022, MNRAS, voir doi.org/10.1093/mnras/stac1969)

Les observations historiques comme clé épistémique

Nos deux approches, la localisation astrophysique sur le diagramme H-R et la prise en compte des sources historiques, mènent à la même conclusion essentielle, à savoir la réalité du changement de couleur au cours des derniers millénaires. Cette double méthode permet d’obtenir de nouvelles informations astrophysiques.

La distance exacte de Bételgeuse n’est pas bien mesurée (s’agissant d’une supergéante, cette étoile est plus grande que sa parallaxe) ; aussi son âge, sa masse et son stade évolutif ne sont-ils pas non plus rigoureusement déterminés. Calculées théoriquement, les trajectoires évolutives sont calibrées au moyen de nombreuses observations, en particulier d’étoiles binaires. Elles montrent la variation de tous les paramètres stellaires détectables de l’extérieur (couleur, température, type spectral, luminosité, rayon, etc.) avec une fusion en cours au centre.

Notre clé épistémique présente l’avantage décisif de contraindre fortement les différents paramètres (comme la distance, la masse et l’âge): Tous ces calculs théoriques doivent être concordants avec le changement de couleur survenu en quelques millénaires. La masse de Bételgeuse, précédemment considérée comme comprise entre 13 et 20 masses solaires, est ainsi estimée à environ 14 masses solaires.

Selon le schéma évolutif retenu pour des étoiles de 14 masses solaires, Bételgeuse n’était effectivement guère plus rouge qu’Aldébaran vers 1573, lorsque Brahe a choisi ces deux étoiles pour préciser la couleur de sa supernova (B-V ≈ 1,6 mag). D’autres travaux, ainsi que les conclusions de la récente atténuation d’éclat de Bételgeuse pendant quelques mois au tournant de 2019 à 2020 [14], permettront d’améliorer encore notre compréhension de l’évolution tardive des supergéantes avant qu’elles n’explosent en supernova.

 

La recherche astronomique fondée sur les vestiges du passé

Ce nouveau champ de recherche méthodologique, exploré par des chercheurs de différents domaines à travers le monde, utilise les observations célestes passées comme clé épistémique pour des problèmes astrophysiques pouvant difficilement être résolus par ailleurs. Le laboratoire Terra-Astronomy [15] travaille sur des sources historiques, mais aussi sur des archives naturelles, tels les radio-isotopes de divers échantillons, pour étudier les phénomènes astrophysiques qui peuvent avoir affecté la Terre ou la concerner dans le futur.

Lorsqu’elle se produira, l’explostion de la supernova de Bételgeuse offrira un magnifique spectacle céleste aux habitants de notre belle planète. Elle était considérée comme imminente par certains, après le « grand assombrissement » de 2019, mais, d’après nos travaux, avec la prise en compte de la masse de l’étoile, de sa phase d’évolution actuelle et du changement de couleur survenu au cours des derniers siècles, il faudra attendre environ 1,5 million d’années pour observer cette explosion.

Les relations anciennes des phénomènes célestes sont utilisées dans d’autres domaines de l’astrophysique, notamment l’étude de l’activité solaire passée, grâce aux récits des aurores polaires et celle des novae ou supernovae galactiques (par exemple SN 1572), ainsi que le calcul des anciennes orbites de comètes [16]. Plusieurs domaines de la géophysique bénéficient également des observations anciennes ; les changements de la période de rotation de la Terre au cours des trois derniers millénaires sont déterminés grâce aux relations des éclipses solaires, également utilisées pour étudier les tremblements de terre et les éruptions volcaniques. Le passé nous en apprend beaucoup aussi sur la variabilité du climat.

 

Par  Dagmar L. Neuhäuser, Chercheuse indépendante, Merano, Italie & Ralph Neuhäuser, Institut d’astrophysique, université de Jena, Allemagne

 

Publié dans le magazine L’Astronomie Avril 2023

 

 

 

 

 

 

 

Notes :

  1. Neuhäuser D.L., Neuhäuser R. (2023): « The shifting hues of Betelgeuse », Astronomy & Geophysics 64, p. 1.38-1.42.
  2. Tycho Brahe 1602, Astronomiae instauratae progymnasmata, in : I. L. E. Dreyer 1913, Brahe’s Opera omnia, t. II, p. 308.
  3. Voir note 2.
  4. Tycho Brahe 1573, De nova stella, trad. par J. H. Walden, in Shapley & Howarth, 1929, A Source Book in Astronomy.
  5. Brahe 1602, trad. par Baade 1945, The Astrophysical Journal 102, 309.
  6. Par exemple, Böhme 1937, Astronomische Nachrichten 262, 479.
  7. De nova stella, 1573, in : Dreyer 1913, t. III, p. 106.
  8. Notons que Véga dans la constellation de la Lyre (alpha Lyr), étoile de référence des magnitudes, a par définition un indice nul : B-V = 0,0 mag.
  9. 2004, The Astrophysical Journal 612, 357.
  10. Le « trou des géantes jaunes », tant dans le diagramme couleur-magnitude que dans le diagramme de Hertzsprung-Russell est une région pauvre en étoiles en raison d’une évolution rapide de celles-ci. Elle se situe approximativement à la magnitude absolue Mv = -6 à -8 mag et à l’indice de couleur B-V = 0,5 à 1,8 mag.
  11. Cela est détaillé dans Ceragioli 1995, Journal for the History of Astronomy 26, 187.
  12. Voir Le Boeuffle éd.et trad., 1983, Hygin, l’Astronomie (latin et français), Paris, Les Belles Lettres.
  13. Pour un historique de l’astronomie chinoise ancienne, lire par exemple Bonnet-Bidaud 2017, 4 000 ans d’astronomie chinoise, Paris, Éd. Belin, « Bibliothèque scientifique », p. 58 : « La théorie des cinq éléments ».
  14. Montargès, M., Cannon, E., Lagadec, A., et al., 2021, Nature 594, 365.
  15. Pour en savoir plus sur Terra-Astronomie, consulter www.astro.uni-jena.de, rubrique Terra-Astronomy.
  16. Par exemple, 1P/Halley AD 760, Neuhäuser, D.L. et al., 2021, Icarus 364, 114278.
Instagram
YouTube
YouTube
Follow by Email