LE MAGAZINE DES SCIENCES DE L’UNIVERS EN AFRIQUE
Les sursauts radio rapides, histoire d’une théorie sur un phénomène astronomique

Les sursauts radio rapides, histoire d’une théorie sur un phénomène astronomique

Les sursauts radio rapides ont été découverts au début des années 2010. Ils ont des propriétés auxquelles personne ne s’attendait. Très vite, des explications ont été proposées. Fabrice Mottez est l’auteur de l’une de ces explications et nous raconte dans cet article l’origine de cette proposition.

Il y a quelques années, un train dans lequel je voyageais s’arrêta sur la voie. À l’époque, la SNCF n’informait pas ses voyageurs de la nature des incidents concernant leur voyage. Dans les haut-parleurs de la voiture, une voix nous demanda simplement de ne pas descendre sur les voies. Alors, tranquillement, des voyageurs firent part de leur interprétation du phénomène. Dehors, rien ne paraissait anormal ; nous n’avions aucune information et toutes les explications données étaient plausibles compte tenu du peu d’informations dont nous disposions. Avez-vous constaté ce phénomène : moins les gens en savent, plus ils ont d’explications à proposer ? Voici le récit d’une recherche de nature théorique, commencée vers 2012, à propos d’un phénomène observé pour la première fois en 2006 et qu’on appellerait bientôt « sursaut radio rapide » (FRB pour fast radio burst en anglais).

 

Fig 1. Spectre du FRB011025 (obtenu le 25 octobre 2010) avec le radiotélescope de Parkes, en Australie. L’axe horizontal représente le temps exprimé en millisecondes. L’axe vertical représente les fréquences exprimées en mégahertz. Le signal apparaît en noir, il se détache clairement du bruit de fond. Le fait que le signal aux basses fréquences arrive en retard par rapport aux hautes fréquences est un effet de propagation lié aux électrons rencontrés par l’onde entre la source et les observateurs. La durée du signal à une fréquence donnée est de l’ordre de 1 à 10 millisecondes. (Sarah Burke-Spolaor & Keith Bannister, The Astrophysical Journal 792 :19, 2014)

 

Les FRB sont des signaux radio qui durent quelques millisecondes seulement (leur brièveté explique leur découverte tardive), mais les études statistiques montrent qu’il y aurait plusieurs milliers d’événements de ce type chaque jour dans notre ciel. Le fait étonnant, qui a intéressé les théoriciens comme moi, est l’éloignement de ces émetteurs radio, à des milliards d’années-lumière de nous. De plus, pour expliquer la brièveté du phénomène, il faut que sa source soit petite, de l’ordre de la centaine de kilomètres, voire moins. Pour qu’on en capte le signal d’aussi loin, il faut a priori un événement extrêmement énergétique. Ces deux observations semblent relier le phénomène aux étoiles à neutrons, qui sont à la fois des astres très petits, très énergétiques et capables d’émettre des ondes radio, bien que l’intensité généralement observée de ces dernières soit plus faible de plusieurs ordres de grandeur que celle des FRB.

En 2012, une dizaine d’événements avaient été observés. À cette époque, les théoriciens dont j’étais disposaient d’assez peu d’informations. Cela nous permettait d’avancer une grande quantité d’explications possibles : une explosion d’étoile à neutrons, ou sa transformation en trou noir sous l’effet d’une étoile voisine lui fournissant un flux continu de matière, ou bien la fusion de deux étoiles à neutrons, ou encore la chute d’une étoile dans un trou noir ou autre chose de ce genre. Ces événements très violents émettent en principe beaucoup de rayons X et gamma, que nous aurions dû capter. Or, on ne capte ni de rayons X ni de gamma lors des FRB. En outre, on ne s’attend pas à ce que des événements par nature uniques dans l’existence d’une étoile soient fréquents au point d’être observables des milliers de fois par jour. Le phénomène sur lequel nous nous penchions était qualifié de mystérieux et personne ne l’avait envisagé. Pourtant, une fois observé, il y eut plus de théories proposées que d’événements répertoriés ! Ainsi, dire qu’un phénomène est mystérieux ne signifie pas forcément que l’on n’a pas d’explication à avancer.

Avec deux collègues émérites (c’est-à-dire à la retraite mais continuant à faire de la recherche), Jean Heyvaerts et Silvano Bonazzola, nous étudions dans les années 2010 un sujet totalement « hors mode », a priori sans lien avec les FRB : des astéroïdes autour d’une étoile à neutrons. Personne en dehors de nous ne s’intéressait à ce phénomène, car personne ne pensait qu’il serait observable.

Le contexte général de nos recherches était l’environnement des étoiles à neutrons. C’est seulement en 1968 que fut confirmée l’existence des étoiles à neutrons grâce aux observations des radioastronomes, bien que trois physiciens géniaux aient décrit leur structure dès 1939. De nos jours, nous n’avons plus aucun doute sur le fait que les étoiles à neutrons existent. Nous en observons environ deux mille, généralement sous la forme d’émissions radio ou de hautes énergies pulsées à la fréquence de rotation de l’étoile sur elle-même. Nous appelons ces phénomènes répétitifs des pulsars. Les pulsars sont donc les catégories d’étoiles à neutrons les plus faciles à observer, bien que les étoiles à neutrons ne soient pas toutes associées à un pulsar.

Une étoile à neutrons est un astre très compact (une boule de 25 km de diamètre), ayant une ou deux fois la masse du Soleil. Cela représente la masse d’un Soleil et demi contenue dans une boule un peu plus petite que l’agglomération parisienne. Les étoiles à neutrons (du moins celles observées en tant que pulsars) tournent très vite sur elles-mêmes (le pulsar le plus rapide a une période de 1,6 milliseconde, les plus lents, un peu plus d’une seconde, contre 27 jours pour le Soleil), avec des champs magnétiques ultra-intenses, de l’ordre de 108 teslas. Et les champs magnétiques sont de très bons « ingrédients » pour fabriquer des ondes radio, lesquelles sont observables depuis la Terre. Et les champs magnétiques sont aussi ma spécialité.

Il doit y avoir environ un milliard d’étoiles à neutrons dans notre Galaxie. Il faut qu’elles soient disposées par rapport à nous selon des angles particuliers pour que nous puissions observer leur rayonnement, c’est-à-dire pour qu’elles apparaissent comme des pulsars ; c’est pour cela que nous n’en voyons que deux mille, tandis que nous estimons leur nombre à un milliard.

Certaines étoiles à neutrons ont un champ magnétique mille fois plus intense que ceux des pulsars et tournent un peu moins vite sur elles-mêmes (une rotation en une à dix secondes). On les appelle des magnétars.

Nous n’avons aucune preuve expérimentale que de telles étoiles puissent être environnées d’astéroïdes. Simplement, un article de radioastronomes publié vers 2008 montrait que des fluctuations de la période avec laquelle nous recevons les signaux d’un pulsar particulier, PSR J1937+21, pourraient être dues à la présence d’astéroïdes. Contrairement aux astéroïdes, nous avions des preuves que des planètes de pulsars existent. Ce furent même les premières exoplanètes découvertes, en 1992 : quatre planètes autour du pulsar PSR B1957+12, bien avant la fameuse planète 51 Peg b orbitant autour d’une étoile de la séquence principale. Une poignée de pulsars sont maintenant connus pour héberger des planètes.

2. Vue d’artiste d’une planète orbitant autour d’un pulsar. (Mark A. Garlick; Dunlap Institute for Astronomy & Astrophysics, University of Toronto)

 

Vers 2009, je faisais des calculs pour interpréter quelque chose qui n’avait rien à voir avec les FRB, dont j’ignorais alors l’existence. Je voulais comprendre le comportement particulier d’un pulsar nommé PSR 1931+24. Celui-ci est parfois actif (en émettant des ondes radio) et parfois inactif (inobservable). Il alternait les phases d’activité et d’inactivité de manière quasi périodique en une trentaine de jours. Cette périodicité et d’autres propriétés suggéraient que les variations d’activité du pulsar pouvaient être causées par son interaction avec une planète.

Les étoiles à neutrons émettent un vent d’électrons et de positrons. Les positrons sont des anti-électrons, des particules prédites en 1931 par le physicien Paul Dirac, puis détectées expérimentalement en 1932 par un autre physicien, Carl David Anderson. Le positron est de même masse que l’électron, mais de charge électrique opposée à celle de l’électron, c’est-à-dire positive. La notion d’antimatière a un je-ne-sais-quoi de fascinant qui a beaucoup inspiré les scientifiques et les auteurs de science-fiction. Certains imaginaient dans les années 1950-1960 des galaxies d’antimatière côtoyant dans l’Univers des galaxies de matière comme la nôtre. Des recherches menées dans les années 1970 ont montré qu’en fait, la matière est relativement rare dans l’Univers (elle ne constitue que 20% de sa masse, ou son équivalent en énergie), mais l’antimatière, elle, est presque complètement inexistante. Cependant, dans un pulsar, il arrive que des photons de très haute énergie constituant des rayons gamma se désintègrent en interagissant avec d’autres photons ou avec un champ magnétique, en produisant un électron et son antiparticule, un positron. Les paires d’électron-positron ainsi créées dans les pulsars sont assez nombreuses et énergétiques pour alimenter un vent se propageant depuis l’étoile vers l’espace. Ce vent est peu dense mais extrêmement rapide : il progresse quasiment à la vitesse de la lumière. Comme la théorie de la relativité d’Einstein s’applique pleinement dans ce cas, on dit que ce vent est ultra-relativiste. (Autrement dit, en faisant des calculs de mécanique classique – donc approchés par rapport à la réalité –, on n’obtiendrait avec le vent d’un pulsar  des résultats complètement faux.)

Fig. 3. Dans la plupart des expériences menées sur notre belle planète dans des accélérateurs de particules, des paires électron-positron peuvent être créées lorsqu’un photon de rayonnement gamma interagit avec le champ électrique d’un atome rencontré sur son passage. C’est ce qui est illustré sur cette figure. Pour transformer un photon en une telle paire de particules, il est nécessaire que l’énergie initiale du photon gamma dépasse l’énergie de masse de l’électron plus celle du positron. C’est pour cela que seuls des photons gamma permettent cette réaction, les autres (X, visible, etc.) n’ont pas assez d’énergie. Dans une magnétosphère de pulsar, il y a peu d’atomes, mais beaucoup de photons dans la gamme des rayons X. Les paires électron-positron sont alors créées par interaction entre un photon gamma et un photon X. (DR)

 

Se trouver face à ce genre de phénomène a quelque chose de déroutant, et l’idée même n’en vient pas spontanément. Pour se faire une place dans ce monde de théories, il n’y a pas de routine possible. Il faut chercher à être à la fois créatifs et rigoureux. L’équilibre n’est pas aisé, et pour distinguer ce qui est possible de ce qui ne l’est pas, on rencontre souvent de sérieuses difficultés de calcul.

En 2012, j’avais calculé que, dans un vent ultra-relativiste, des astéroïdes ou des planètes d’étoiles à neutrons pouvaient émettre des ondes radio dans un faisceau extrêmement fin (bien plus fin que celui d’un laser) et avec une densité d’énergie très élevée. Si la Terre passait dans un tel faisceau, on capterait un signal radio même si la source était à des millions d’années-lumière (on a mieux calculé depuis qu’elle était même à des milliards d’années-lumière), c’est-à-dire dans des galaxies extrêmement éloignées.

Voici comment est élaboré ce modèle : imaginez un gros caillou conducteur d’électricité (les roches le sont toutes un peu), immergé dans ce vent ultra-rapide et accompagné d’un champ magnétique. Il se forme à l’arrière de ce caillou un sillage analogue à celui que laisse derrière lui un bateau, quasi stationnaire dans le référentiel du navire. S’agissant d’un astre dans un vent magnétisé d’électrons et de positrons, les ondes stationnaires sont des ondes de perturbation du champ magnétique, que l’on appelle des ondes d’Alfvén (voir l’éclairage du numéro de janvier 2022), et ces ondes stationnaires attachées à la planète ou à l’astéroïde sont appelées des ailes d’Alfvén.

Les ailes d’Alfvén sont bien expliquées, notamment celles du satellite Io, qui se déplace dans la magnétosphère de Jupiter. Je les avais étudiées avec un collègue radioastronome, Philippe Zarka, et un étudiant que nous encadrions alors, Sébastien Hess. Mais l’environnement de Jupiter n’est pas ultra-relativiste. En 2011, nous avions montré avec Jean Heyvaerts que les ondes d’Alfvén apparaissent dans un vent ultra-relativiste d’électrons et de positrons, dont nous avions calculé les propriétés. Nous avions aussi montré qu’une interaction entre une planète immergée dans le vent émis par le pulsar PSR 1931+24 (donc très proche de l’étoile à neutrons) pouvait expliquer l’intermittence quasi périodique de ce vent.

Le défaut de notre modèle, à ce stade de développement, était de n’indiquer aucune forme de rayonnement que pourraient capter les télescopes ou les radiotélescopes des astronomes. Or, une théorie n’impliquant pas de phénomènes observables n’intéresse en général pas grand monde. De plus, le fait que PSR 1931+24 puisse s’allumer et s’éteindre régulièrement était une preuve insuffisante de la pertinence du modèle développé par Jean Heyvaerts et moi. Jean décéda subitement en 2013. Vers 2014, j’essayais de calculer quel genre d’ondes radio pourrait engendrer un astre orbitant dans le vent ultrarelativiste d’un pulsar.

Mes calculs montrèrent que le faisceau d’ondes radio émis par le vent au moment où il traverse l’aile d’Alfvén de la planète ou du satellite se trouve focalisé vers l’avant (donc dans la direction opposée à l’étoile). Toute l’énergie était concentrée dans un cône dont l’angle au sommet est de l’ordre de 1/10 000 de degré. Ce faisceau, avec une forte densité de rayonnement encore mieux focalisée qu’un faisceau laser, avait donc tout ce qu’il fallait pour être vu de très loin (puisque la densité de rayonnement est forte), mais seulement très brièvement (au moment précis où la ligne de visée de l’observateur croise ce faisceau). J’étais un peu déçu, car je pensais qu’il faudrait une chance incroyable pour observer un tel phénomène. Quant à PSR 1931+24, sa planète n’avait pas la bonne orientation par rapport à nous pour nous permettre d’observer une telle émission.

Je racontai cela à mon ami Philippe, le radioastronome, lors d’un repas à la cantine de l’Observatoire, en 2013. Je lui dis que je croyais ces signaux inobservables. C’est là qu’il me parla des FRB. Ou plutôt du seul FRB observé à l’époque, qu’on appelait le « signal de Lorimer », un signal ultra-énergétique qu’un radioastronome australien appelé Duncan Lorimer avait découvert en 2010 en ré-épluchant les archives d’un radiotélescope australien (il réanalysait le signal brut avec de nouvelles techniques). Ce que je racontais à Philippe correspondait exactement à ce que Lorimer avait observé. C’était en 2013. À cette époque, Lorimer s’était laissé convaincre que son signal n’était pas un artefact, et il embauchait une thésarde nommée Emily Petroff.  Petroff et Lorimer découvrirent et caractérisèrent vers 2012-2013 d’autres signaux de ce genre, puis des signaux analogues furent observés avec d’autres radiotélescopes. C’est à ce moment-là que le terme FRB fut inventé. Philippe et moi nous sommes mis au travail ensemble et, en 2014, nous avons publié un article montrant que des planètes (nous ne pensions pas encore à des astéroïdes) autour d’un pulsar pouvaient expliquer les FRB. On connaissait une dizaine de FRB en 2014, on dépasse le millier actuellement.

Nous présentions le seul modèle prédisant que les FRB pourraient se répéter périodiquement : du fait que les planètes tournent régulièrement, à chaque passage, on a une chance de capter un FRB. Tous les autres modèles de FRB associés à des sources très éloignées prévoyaient des phénomènes catastrophiques extrêmement énergétiques, mais uniques. Dans les mêmes années, des radioastronomes prouvèrent que les FRB se produisent réellement à des milliards d’années-lumière de nous. Notre modèle était donc le seul à prévoir la production d’un FRB par une source située à la bonne distance, ainsi que sa répétition périodique.

 

Fig. 4. Schéma illustrant le sillage d’un astéroïde dans le vent d’un pulsar ou d’un magnétar et l’emplacement des sources d’émission radio perçues depuis la Terre sous la forme de FRB. L’étoile à neutrons est à gauche (hors image) et le vent issu de la magnétosphère de cette étoile (flèche rouge) se déplace vers la droite. L’astéroïde possède un sillage électromagnétique nommé aile d’Alfvén, parcouru par un courant électrique intense (flèches bleues). L’interaction du vent du pulsar avec ce courant, qui a lieu dans l’aile, hors de l’ombre de l’astéroïde (zone en jaune), crée des émissions d’ondes radio. Dans le repère de l’astéroïde (ou celui de la Terre), celles-ci sont émises dans un faisceau étroit (figuré en vert). En réalité, l’angle formé par l’aile avec la direction du vent, ainsi que l’ouverture de l’angle au sommet du cône sont beaucoup plus faibles que sur cette image. Ces émissions radio sont très puissantes dans la direction du cône et nulles dans les autres directions. Quand ce cône croise brièvement les radiotélescopes terrestres, à des milliards d’années-lumière de distance, le signal correspond à un FRB. (F. Mottez)

 

Quelques mois plus tard, des radioastronomes d’Arecibo découvrirent un FRB se répétant. Il fut baptisé FRB121102, car il avait été enregistré la première fois le 2 novembre 2012 (et identifié ultérieurement). Quelle joie pour nous ! Mais les répétitions étaient irrégulières, et donc notre modèle ne collait pas parfaitement. Alors, avec Philippe et l’un de mes anciens étudiants, Guillaume Voisin, nous avons repensé à des astéroïdes. Il nous semblait que ceux-ci, par leur nombre et leurs positions variées autour de l’étoile, feraient disparaître le caractère périodique associé à une seule planète. Nous nous disions qu’en jouant un peu avec les paramètres, nous devrions y arriver.

Avec une collègue de l’Institut d’astrophysique de Paris, Kumiko Kotera, nous avons étudié le chauffage des astéroïdes. S’ils sont trop proches d’une étoile à neutrons, dont la température de surface est d’un million de degrés et qui émettent des ondes radio de très grande énergie, il faut s’attendre à ce que les astéroïdes s’évaporent, et donc… qu’il n’y en ait plus. Alors, exit notre modèle. L’onde électromagnétique qui chauffe des astres autour des pulsars est une onde émise à la fréquence de rotation du pulsar sur lui-même et qui se propage à la vitesse de la lumière. Comme une étoile à neutrons fait typiquement de 1 à 1 000 tours par seconde, c’est une onde de fréquence entre 1 Hz et 1 000 Hz, dont la longueur se mesure en centaines de kilomètres. Or, j’avais observé que, dans un four à micro-ondes (qui chauffe un peu à la manière de cette onde d’étoile à neutrons), on peut faire bouillir un bol rempli d’eau, mais que les gouttes tombées à côté du bol restent tièdes et ne s’évaporent pas. Avec Kumiko, nous avons expliqué cette observation par une théorie physique bien connue (la théorie de Mie), que nous avons appliquée aux astéroïdes de pulsar : pour qu’un corps absorbe l’énergie d’une onde (telle celle émise par un pulsar) et soit chauffé par elle, il faut que les dimensions de ce corps soient comparables ou plus grandes que la longueur de cette onde. Nous avons montré que les astéroïdes baignés dans les ondes des pulsars sont comme les gouttes d’eau dans un four à micro-ondes : ils sont assez petits pour ne pas être suffisamment chauffés et demeurent donc dans leur état solide de gros caillou.

Ensuite, j’ai préféré attendre que les données d’observation s’accumulent avant de me remettre au travail sur ce sujet. En fait, je ne croyais plus à ce modèle, pour certaines raisons techniques, liées notamment à la durée du phénomène, que je pensais plus variable que celle des FRB observés. Mais Philippe insistait pour s’y remettre. En 2020, je me suis laissé convaincre. Philippe, Guillaume et moi avons conçu un autre modèle montrant que des astéroïdes d’étoile à neutrons peuvent causer des FRB. En gros, notre nouveau modèle tenait bon, alors que des dizaines d’autres devenaient caduques au vu de récentes observations.

 

5. A l’issue d’une enquête difficile, il a été possible de localiser le FRB121102, le premier identifié comme ayant des sursauts se répétant aléatoirement. Il est situé dans une galaxie naine dénuée de caractéristiques remarquables, dont la distance est de l’ordre de 3 milliards d’années-lumière. (Gemini Observatory/AURA/NSF/NR)

 

Durant cette période 2018-2020, des observateurs découvraient un autre FRB répéteur (on en connaît actuellement plus d’une vingtaine). Celui-ci est périodique, mais statistiquement seulement : des sursauts se produisent aléatoirement, mais seulement lors d’intervalles de temps de quelques jours se répétant tous les 16 jours. Guillaume eut une idée judicieuse pour interpréter ce comportement : il serait dû à la présence de deux familles particulières d’astéroïdes, les troyens et les hildas, également observés dans l’environnement de Jupiter. Nos « ingrédients » étaient donc un pulsar (pas suffisamment bien orienté pour être observé, comme c’est le cas le plus fréquent), entouré d’une grosse planète (qu’on ne voit pas) et d’astéroïdes troyens et hildas liés à cette planète et à l’étoile à neutrons.

De nos jours, notre théorie n’est toujours pas dans le mainstream, ce n’est pas celle que les collègues citent le plus souvent. Cependant, elle reste en lice. Deux familles de modèles, avec de multiples variantes, sont plus populaires (à lire dans le prochain numéro de l’Astronomie), et une poignée d’autres avec un statut semblable à la nôtre.

Une autre théorie est souvent assimilée à la nôtre, car elle implique aussi une étoile à neutrons et des astéroïdes. Elle a été développée notamment par Bing Zang, de l’université du Nevada (É.-U.). Contrairement à la nôtre, qui laisse les astéroïdes en orbite autour d’une étoile à neutrons, la sienne fait tomber les astéroïdes directement sur l’étoile.

Les théories actuelles expliquent beaucoup de choses, mais pas tout. Elles progressent petit à petit, au fil des observations et des idées nouvelles. On peut espérer qu’il y aura finalement un consensus. Pour le moment, les chercheurs ne sont pas tous prêts à admettre qu’une seule et même théorie puisse expliquer l’ensemble des FRB. Il pourrait en effet exister plusieurs sortes de FRB, avec des causes différentes.

Que notre théorie soit bonne ou mauvaise, qu’elle survive ou non aux futures observations, nous aurons fait notre travail de chercheurs scientifiques, car la science avance ainsi, avec des essais, des échecs et des succès. Une théorie ne peut être acceptée seulement parce qu’elle fonctionne. Il faut aussi vérifier s’il n’y en a pas d’autres possibles. Et pour en être sûr, il faut toutes les essayer.

Fabrice MOTTEZ | CNRS, Observatoire de Paris

 

L’atmosphère des planètes terrestres – Une évolution divergente

L’atmosphère des planètes terrestres – Une évolution divergente

Parmi les quatre planètes telluriques, seules Vénus, la Terre et Mars sont dotées d’une atmosphère. Dans le cas de Mercure, la planète la plus petite et la plus proche du Soleil, le champ de gravité est trop faible et la température du côté jour trop élevée pour que la planète puisse conserver une atmosphère stable. Si l’on observe les atmosphères des trois autres planètes terrestres, on ne peut qu’être frappé par l’extrême diversité de leurs conditions de surface.

 

En effet, sur Vénus, la pression est presque cent fois la valeur terrestre, tandis que sur Mars, elle est inférieure au centième de bar ; quant à la température, elle frise les 460 °C sur Vénus et est en moyenne de –50 °C sur Mars, avec de fortes variations saisonnières. En revanche, la composition atmosphérique des deux planètes présente une forte similarité : dans les deux cas, elle est largement dominée par le dioxyde de carbone CO2 , avec quelques pour cent d’azote moléculaire N2. En dehors de l’argon, également présent sur Vénus au même niveau que N2, les autres éléments, en particulier CO et H2O, sont présents à l’état de traces, avec un rapport de mélange inférieur au pour cent. Quant à la Terre, avec une pression moyenne de 1 bar et une température moyenne de 15 °C en surface, elle occupe une position intermédiaire, comme on peut s’y attendre du fait de sa distance héliocentrique, entre ces deux extrêmes que représentent Vénus et Mars. Cependant, sa composition atmosphérique, constituée d’environ quatre cinquièmes d’oxygène moléculaire et d’un cinquième d’azote, est radicalement différente de celle de ses deux voisines. Comment ces trois planètes, a priori formées dans le même environnement, ont-elles pu évoluer de manière si divergente ? C’est l’une des grandes questions de la planétologie.

1. Vénus, la Terre et Mars. Les dimensions relatives des trois planètes sont respectées. (Nasa)

 

Tour d’horizon des trois atmosphères : similarités et différences

Commençons par une brève description des propriétés orbitales et physiques des trois planètes (tableau 1). Situées respectivement à 0,7 et 1 UA du Soleil, Vénus et la Terre ont des propriétés globales (taille, densité) très voisines, tandis que Mars, plus éloignée, à 1,5 UA du Soleil, est aussi nettement plus petite : sa masse est le dixième de celle de la Terre. La Terre et Mars ont en commun une obliquité proche de 24° et une période de rotation proche de 24 heures. Vénus, en revanche, avec une obliquité de 177° et une période de rotation de 243 jours, présente une rotation rétrograde extrêmement lente.

Observées au télescope, les trois planètes présentent un aspect très différent. La surface de Vénus est en permanence cachée par une épaisse couche de nuages ; les observations spectroscopiques ont montré qu’il s’agit de gouttelettes d’acide sulfurique, dont la présence résulte de la photodissociation du dioxyde de soufre suivie de la combinaison avec la vapeur d’eau. La basse atmosphère de Vénus est vraiment très inhospitalière ! D’ailleurs, les nombreuses sondes spatiales, pour la plupart envoyées par l’Union soviétique, n’ont jamais résisté au-delà d’une heure ; cela a été néanmoins suffisant pour envoyer vers la Terre des images de la surface, dévoilant un environnement volcanique. Les images de la planète Mars envoyées en 1972 par la sonde américaine Mariner 9 nous ont fait découvrir une surface désertique, formée de plaines au nord et de plateaux plus élevés au sud, qui porte la marque d’une intense activité tectonique et volcanique passée, avec en particulier les volcans de Tharsis et l’immense canyon Valles Marineris. Des calottes de glace carbonique se forment alternativement aux pôles en hiver : dans l’atmosphère très raréfiée de Mars, le dioxyde de carbone condense en hiver, provoquant des fluctuations allant jusqu’à 30 % de la pression totale au sol. Enfin, la Terre, avec ses océans et ses continents, est la « planète bleue » ; elle est en permanence recouverte de nuages blancs de vapeur d’eau sur une large fraction de sa surface globale.

La surface de Mars nous a été révélée grâce à la mission Viking. Lancée en 1975 par la Nasa, elle était constituée de deux orbiteurs et de modules de descente, en opération pendant plusieurs années. Elle a fourni ainsi une mine d’informations sur l’atmosphère et la surface de la planète. Celle-ci (fig. 2) présente une similarité frappante avec certains déserts terrestres ; elle est constituée de silicates et d’oxydes de fer qui donnent à la planète sa couleur rouge. Dans le cas de Vénus, c’est la mission Magellan, lancée également par la Nasa en 1989, qui a permis de cartographier sa surface au moyen d’un radar en orbite autour de la planète. La surface de Vénus est apparue uniformément recouverte de volcans (fig. 3) ; le faible nombre de cratères d’impact indique que leur âge n’excède pas quelques centaines de millions d’années ; c’est la signature d’un épisode volcanique global intervenu à cette époque.

 

2. Le sol de Mars observé depuis le site de l’atterrisseur Viking 1.

 

3. Le sol de Vénus, cartographié par imagerie radar par l’orbiteur Magellan. On voit ici Maats Mons, l’un des volcans les plus élevés de Vénus. (NASA)

 

On sait peu de chose de la structure interne de Vénus et de Mars ; dans le cas de cette dernière, les mesures de la sonde américaine InSight, en opération sur le sol martien depuis février 2019, devraient nous fournir de nouvelles informations dans les années qui viennent. En revanche, la structure interne de la Terre nous est bien connue, en particulier par l’étude des ondes sismiques qui s’est développée dans le courant du xxe siècle. Nous savons que la structure interne de la Terre se caractérise par la présence d’un noyau métallique, solide au centre et liquide dans ses couches externes, surmonté d’un manteau silicaté, avec différentes zones de transition correspondant à des changements de phase. Cette structure est le produit de la séquence de condensation des éléments chimiques, dont l’abondance reflète l’abondance du disque protosolaire (c’est-à-dire celle des éléments dans le Soleil), soumis à un lent refroidissement au sein du disque. On peut donc s’attendre à ce que la structure interne des planètes Vénus et Mars, formées dans un environnement proche de celui de la Terre, soit comparable dans ses grandes lignes.
Sur la Terre, un autre phénomène intervient : la tectonique des plaques, découverte par Alfred Wegener en 1915 et réfutée en son temps, universellement reconnue depuis les années 1960. Ce phénomène, dû à la convection du manteau supérieur terrestre, se traduit par un mouvement d’émergence (le long des dorsales océaniques) des matériaux issus du manteau, accompagné d’un mouvement de subduction d’une quantité équivalente de matériaux sous la croûte continentale. Ce phénomène est sans doute rendu possible par la présence des océans, la présence d’eau favorisant la convection au sein du manteau supérieur. Dans le cas de Vénus et de Mars, très pauvres en vapeur d’eau et dépourvues d’océans liquides, il n’y a pas de tectonique des plaques. Cependant, Mars garde la trace d’une activité tectonique importante dans le passé, avec l’émergence du plateau de Tharsis et l’immense canyon Valles Marineris.
En résumé, il apparaît que les trois planètes terrestres, malgré les disparités observées dans la nature de leur atmosphère, présentent bien, dans leur composition interne et leur surface, les similitudes que l’on peut attendre de trois planètes formées dans un environnement commun. Dès lors, comment expliquer l’évolution divergente de leurs atmosphères ? Pour la comprendre, il nous faut revenir aux mécanismes de formation des planètes, telluriques et géantes, dans le Système solaire.

Une formation au sein d’un disque

Nous savons aujourd’hui que les étoiles se forment généralement à la suite de l’effondrement en un disque d’une masse de gaz interstellaire en rotation sur elle-même ; c’est au sein de ce disque que se forment les planètes. Dès le XVIIe siècle, Emmanuel Kant puis Pierre-Simon de Laplace proposent ce scénario pour l’origine du Système solaire, sur la base de l’observation des orbites planétaires, toutes concentriques autour du Soleil et presque coplanaires. Dans ce scénario, la formation de deux classes de planètes, telluriques et géantes, peut s’expliquer assez simplement, si l’on considère que les planètes se forment par agglomération de particules solides au sein du disque protosolaire (fig. 4).

À proximité du Soleil (à une distance du Soleil inférieure à environ 3 UA), les seules particules solides sont des matériaux réfractaires, essentiellement des silicates et des oxydes métalliques ; ils proviennent d’éléments relativement lourds (Si, Mg, Fe…) et sont relativement peu abondants : en effet, la fusion des éléments lourds synthétisés dans les étoiles nécessite une grande énergie, et leur abondance cosmique tend à diminuer à mesure que leur masse atomique augmente. Les objets ainsi formés sont donc des objets relativement petits et denses : ce sont les planètes telluriques.

En revanche, à plus grande distance du Soleil (au-delà de 3 UA environ), la température au sein du disque protosolaire est suffisamment basse pour que la plupart des molécules simples formées avec les éléments les plus abondants (H2O, CH4, NH3, CO2…) soient sous forme de glace (alors que dans le cas précédent, ces molécules étaient à l’état de vapeur). La matière solide disponible est alors suffisante pour former de gros noyaux de glace dont la masse peut atteindre 10 à 15 masses terrestres. À ce stade, le champ de gravité de ces noyaux devient suffisant pour capturer la matière protosolaire environnante, principalement constituée d’hydrogène et d’hélium : les planètes géantes sont nées.

Revenons aux planètes telluriques. Leur champ de gravité est insuffisant pour conserver les éléments les plus légers (et les plus abondants) que sont l’hydrogène et l’hélium. En revanche (à l’exception de Mercure), elles peuvent conserver des molécules gazeuses plus lourdes, comme l’eau, le dioxyde de carbone, l’azote ou l’oxygène moléculaires. L’atmosphère des planètes telluriques a vraisemblablement deux origines : d’une part, elle provient du dégazage progressif du globe, après la phase de formation de la planète ; d’autre part, elle résulte du bombardement météoritique subi par la planète tout au long de son histoire. En particulier, des petits corps riches en eau, provenant de l’extérieur du Système solaire, sont sans doute à l’origine de l’eau des océans terrestres ; des impacts similaires ont dû affecter Vénus et Mars.

Quelle pouvait être la composition atmosphérique des planètes telluriques juste après leur formation ? D’après les modèles d’équilibre thermochimique, les atmosphères primitives ont dû être riches en dioxyde de carbone, en vapeur d’eau et en azote moléculaire ; en revanche, le méthane CH4 et l’ammoniac NH3 sont attendus (et effectivement présents) dans les planètes géantes. En effet, CO2 et N2 sont bien présents sur Vénus et Mars, le rapport N2/CO2 étant presque le même (quelques pour cent) sur les deux planètes. Une question se pose immédiatement : pourquoi les atmosphères de Vénus et Mars sont-elles dépourvues d’eau ?

Vénus et mars : à l’origine, beaucoup d’eau

Si l’eau a quasiment disparu aujourd’hui de l’atmosphère de Vénus et de Mars, cela n’a pas toujours été le cas. Nous le savons grâce à la présence d’une molécule, l’eau lourde (dite aussi monodeutérée) HDO, détectée par spectroscopie dans les deux planètes. HDO est une molécule d’eau H2O dans laquelle un atome d’hydrogène a été remplacé par son isotope, le deutérium. Celui-ci est un atome d’hydrogène (donc un électron et un proton) auquel s’est ajouté un neutron ; il a les mêmes propriétés chimiques que l’hydrogène, mais est deux fois plus lourd. Or, les mesures spectroscopiques du rapport d’abondance D/H (dérivé du rapport HDO/H2O) réalisées sur Mars en 1988 et Vénus en 1990 ont mis en évidence un enrichissement par rapport à la valeur terrestre d’un facteur 6 sur Mars et 120 sur Vénus ! Dans les deux cas, l’interprétation est la même : l’eau a été présente en abondance sur les deux planètes à l’origine, mais elle s’est échappée massivement au cours de leur histoire, suite à la dissociation des molécules H2O et HDO par le rayonnement ultraviolet solaire ; dans ce processus, le deutérium, deux fois plus lourd que l’hydrogène, s’est échappé moins facilement, ce qui a conduit à un enrichissement progressif du rapport D/H. L’enrichissement très élevé de Vénus est dû au fait que son atmosphère est très dense.

Dans le cas de Mars, il existe, en plus du rapport D/H, tout un faisceau d’indices témoignant de la présence d’eau – et même d’eau liquide – dans le passé de la planète. Le premier indice vient des images du sol prises par Mariner 9 et Viking, montrant des réseaux de vallées ramifiées desséchées (fig. 5) dans les terrains les plus anciens (de plus de 3,7 Ga), ainsi que des « vallées de débâcle » suggérant des inondations brutales dans un passé plus récent (entre 3 et 3,7 Ga). En 1998, la sonde Mars Global Surveyor a mis en évidence, entre les plaines du nord et les plateaux du sud, une ligne d’altitude constante s’étendant sur près de mille kilomètres, qui pourrait être le vestige d’une ligne de rivage, suggérant la présence possible d’un océan boréal il y a quelque 3 Ga (fig. 6). En 2000, la sonde Mars Odyssey a découvert la présence de pergélisol sous les pôles martiens. En 2006, le spectromètre infrarouge OMEGA de la sonde européenne Mars Express a détecté des argiles dans les terrains les plus anciens, suggérant que l’eau liquide a dû y couler en abondance au début de l’histoire de la planète. Enfin, en 2016, le robot Curiosity a mis en évidence dans le cratère Gale un environnement dit « habitable », c’est-à-dire réunissant un certain nombre de critères nécessaires à l’apparition de la vie : présence d’eau liquide, des éléments clés (C, H, N, O, P, S), de fer et de soufre dans différents états d’oxydation, milieu neutre et salinité faible (fig. 7). Cependant, si tout le monde s’accorde aujourd’hui sur la présence passée d’eau liquide sur Mars, les avis divergent quant à son abondance : les estimations de la profondeur du réservoir, moyennée sur le disque, varient entre 100 et 1 000 mètres selon les méthodes utilisées.

 

Au départ, un soleil moins brillant

Pour comprendre l’évolution des atmosphères planétaires, il faut se rappeler qu’il y a 4,5 milliards d’années, le Soleil était moins brillant qu’aujourd’hui. Selon les modèles d’évolution stellaire, il rayonnait alors 70 % de son flux actuel. Les températures d’équilibre de surface des planètes telluriques (celles que l’on calcule en supposant que tout le flux absorbé par la planète sert à chauffer sa surface) étaient alors plus faibles qu’aujourd’hui. En particulier, la température de surface de Vénus était alors compatible avec la présence d’eau liquide, ce qui signifie que la planète a pu, au début de son histoire, être recouverte d’océans ! Hélas ! nous n’en aurons sans doute jamais la preuve car, nous l’avons vu, la surface de Vénus a été complètement renouvelée par le volcanisme il y a quelques centaines de millions d’années…

Dans le cas de la Terre, le fait que le Soleil jeune soit moins brillant qu’aujourd’hui crée une difficulté. En effet, la température d’équilibre de la Terre aujourd’hui est compatible avec l’eau liquide ; c’est ainsi que l’eau de la Terre a échappé au phénomène d’échappement mentionné pour Vénus et Mars. Mais le rayonnement relativement faible du Soleil à l’origine pose un autre problème : comment la Terre a-t-elle pu échapper au scénario de la « boule de neige globale » ? En effet, la glace d’eau a un fort pouvoir réfléchissant. Plus la température baisse, plus la glace gagne en surface et réfléchit la lumière solaire, donc plus l’énergie solaire reçue diminue, ce qui amplifie la glaciation… Comme nous le verrons plus loin, c’est sans doute le volcanisme et/ou les impacts météoritiques qui ont permis à la Terre de sortir de ce cercle vicieux.

Qu’en est-il de Mars ? La planète présente, vis-à-vis de ses voisines, deux différences majeures : d’une part, elle est beaucoup moins massive ; d’autre part, elle est plus froide. La faible masse de Mars a deux conséquences : (1) son champ de gravité est plus faible, ce qui diminue les impacts météoritiques ; (2) la réserve d’éléments radioactifs présents dans son intérieur est réduite, ce qui limite l’énergie interne dont la planète dispose. Ces deux facteurs expliquent que l’atmosphère de Mars ait été, dès le départ, bien moins épaisse que celle de ses voisines. Selon les modèles d’évolution planétaire, la pression de surface a quand même pu atteindre le dixième de bar au début de l’histoire de la planète. Mais comment expliquer la présence d’eau liquide, compte tenu du faible rayonnement du jeune Soleil ? Les modèles peinent encore aujourd’hui à expliquer ce paradoxe. Comme sur la Terre, il est possible que des épisodes volcaniques violents ou des impacts météoritiques majeurs aient injecté dans l’atmosphère suffisamment de dioxyde de carbone pour réchauffer l’atmosphère. Celle-ci a dû connaître, à un certain stade, un échappement massif (comme en témoigne le rapport D/H élevé de Mars), mais sa cause n’est pas vraiment élucidée.

 

5. Le réseau de vallées ramifiées Wareggo Valles, observé par la caméra de la sonde Mars Express. (ESA)

 

6. Le site de Yellowknife Bay, dans le cratère Gale, observé par la sonde Curiosity. Les strates minéralogiques témoignent de la présence d’eau liquide dans le passé. (NASA)

 

7. Cartographie de l’altimétrie de Mars réalisée avec l’expérience d’altimétrie de la sonde Mars Global Surveyor. On voit la forte asymétrie nord-sud, avec des plaines au nord et des plateaux plus élevés au sud. La ligne de rivage observée se situe au niveau de la ligne de dichotomie (en jaune) qui sépare les deux types de terrains. (NASA)

Une Evolution Divergente

Nous sommes maintenant en mesure de retracer, dans ses grandes lignes, l’histoire de l’atmosphère des trois planètes depuis leur origine.

Vénus : un effet de serre qui s’emballe

Dans le cas de Vénus, l’atmosphère est, dès le départ, très dense et riche en eau et en dioxyde de carbone. Elle est sans doute tempérée, avec peut-être des océans d’eau liquide ; nous ne pouvons pas le savoir, en l’absence de vestiges de cette période. En revanche, nous savons que le flux solaire a progressivement augmenté. Cette augmentation a entraîné la vaporisation de l’eau, puis sa dissociation et son échappement vers l’extérieur. Mais dès le début de son histoire, l’atmosphère de Vénus a dû être soumise à un fort effet de serre, lié à la présence de vapeur d’eau et de dioxyde de carbone, et sa température de surface a augmenté. Cet effet de serre, alimenté par CO2, s’est poursuivi tout au long de l’histoire de la planète, amenant la température de surface jusqu’à sa valeur actuelle. Ajoutons que l’absence de tectonique des plaques a empêché la séquestration du dioxyde de carbone dans le manteau, comme c’est le cas sur la Terre. L’atmosphère actuelle de Vénus est donc le résultat d’un effet de serre galopant.

 

La Terre, idéalement placée par rapport au soleil

Plus éloignée que Vénus, la Terre, notre planète, a connu au départ une température de surface inférieure à celle de Vénus, ce qui aurait pu entraîner, comme nous l’avons dit plus haut, une phase de glaciation totale. De tels épisodes se sont produits au cours de l’histoire de la planète ; ils ont été heureusement interrompus, sans doute par des phénomènes volcaniques et/ou des impacts météoritiques ; le CO2 libéré dans l’atmosphère a permis son réchauffement par effet de serre. La présence d’océans liquides, datée par les zircons (cristaux de silicates de zirconium), remonte à près de 4 milliards d’années.

À la différence de Vénus, la présence d’eau liquide a fait chuter l’abondance de vapeur d’eau atmosphérique, réduisant drastiquement son rôle dans l’effet de serre. Plus encore, les océans ont permis la séquestration du CO2 sous forme de calcaire CaCO3, grâce à une réaction en deux temps faisant intervenir des silicates présents dans les fonds marins. La quantité de CO2 dans l’atmosphère a alors considérablement diminué. C’est ainsi que la Terre a pu conserver, tout au long de son histoire, une température relativement modérée. Autre conséquence majeure de la présence des océans terrestres : la vie y est apparue, il y au moins 3,7 milliards d’années. Est-elle née par l’intermédiaire de molécules prébiotiques venant de l’espace, ou est-elle apparue au sein des sources hydrothermales ? La question n’est toujours pas tranchée. Mais une chose est sûre : elle a considérablement modifié le climat terrestre. Celui-ci a connu plusieurs épisodes complexes qui ont vu varier la composition atmosphérique, avec l’apparition du méthane il y a 3,7 Ga, la diminution du dioxyde de carbone puis l’apparition de l’oxygène il y a 2,4 Ga. C’est ainsi que l’atmosphère terrestre a acquis sa composition actuelle, riche en N2 et en O2 : ces deux gaz étant très peu actifs du point de vue de l’effet de serre, celui-ci s’est stabilisé au cours du temps. Aujourd’hui, l’effet de serre contribue à une élévation de 30 °C de la température au sol ; dans le cas de Vénus, l’élévation de la température du sol due à l’effet de serre est de plus de 400 °C ! Que sera l’évolution future du climat terrestre ? L’exemple de Vénus illustre que nous avons toutes les raisons d’être inquiets. L’élévation du taux de CO2 atmosphérique lié à l’ère industrielle a entraîné un réchauffement climatique qui va se poursuivre au cours du siècle à venir, compte tenu de la très longue durée de vie du CO2 (plusieurs centaines d’années). Une prise de conscience planétaire du problème est indispensable, avec la mise en place urgente de politiques d’économies d’énergie, de recherche d’énergies renouvelables et de sauvegarde de la biodiversité.

 

Mars, une planète en voie d’extinction géologique

Quant à la planète Mars, elle semble bien à l’abri de ce destin funeste, en l’absence d’êtres intelligents (?) occupés à exploiter les ressources de son sol… En raison de sa petite taille, sa réserve d’énergie interne est plus réduite que celle de ses voisines. il s’est ensuivi une activité volcanique et tectonique plus limitée dans le temps. Celle-ci a pourtant été intense dans le premier milliard d’années : en témoignent les volcans de Tharsis et le canyon de Valles Marineris. Nous en avons une autre preuve avec la découverte, en 1998, d’un champ magnétique fossile détecté par la sonde Mars Global Surveyor dans les terrains anciens de l’hémisphère Sud. Ce champ magnétique est la preuve de l’existence au sein du globe d’un effet dynamo généré par les éléments radioactifs qu’il contenait. Mars a donc connu une magnétosphère dans le premier milliard d’années de son histoire. Avec l’épuisement des réserves d’énergie interne, la dynamo s’est arrêtée et la magnétosphère a disparu, entraînant peut-être la disparition de l’atmosphère… à moins que celle-ci ne se soit échappée suite à un impact géant. L’effet de serre alimenté par le CO2 a ainsi décru, la température a baissé, entraînant le stockage en sous-sol de l’eau résiduelle, sous forme de glace et de pergélisol.

La vie a-t-elle pu apparaître sur Mars ? Nous n’avons pas aujourd’hui de réponse à cette question. Ce que l’on peut dire, c’est que si elle est apparue, elle n’a pas été en mesure de modifier le climat comme cela a été le cas sur la Terre. En revanche, un autre facteur a influé sur le climat martien au cours de son histoire : c’est l’évolution de son obliquité. Des simulations numériques ont en effet montré que celle-ci avait oscillé entre 0° et 60° dans un passé relativement récent, selon un cycle d’environ 120 000 ans, l’amplitude des variations étant modulée avec une période de 2,4 millions d’années. Or, les conséquences sur le climat sont considérables : à forte obliquité, les pôles reçoivent en moyenne plus d’énergie solaire que l’équateur, et les glaciers migrent vers les basses latitudes ; des vestiges de ces glaciers ont été identifiés sur les images prises par les sondes spatiales. ii se trouve que dans le cas de la Terre, la présence de la Lune a stabilisé l’obliquité de la Terre à une valeur comprise entre 22° et 24°. Sans la présence de la Lune, les variations d’obliquité de la Terre auraient certainement eu de lourdes conséquences sur le climat terrestre… et sans doute aussi sur le développement de la vie.

 

Thérèse ENCRENAZ – Observatoire de Paris

 

Des planètes et des volcans

Des planètes et des volcans

L’exploration du Système solaire par les missions spatiales, entreprise vers le début des années 1970, a mis en évidence des traces d’activité volcanique, présentes ou passées, à la surface de la plupart des objets visités.

 

 

Cette observation peut paraître étonnante: pourquoi le volcanisme est-il si répandu à travers le Système solaire ? Mais à la réflexion, elle n’est pas très surprenante. Lors de leur formation, planètes et satellites ont emmagasiné de l’énergie. Les planètes rocheuses renferment aussi des éléments radioactifs (notamment les isotopes 235 et 238 de l’uranium) qui produisent de l’énergie en se désintégrant et, dans certains cas, les forces de marée sont suffisamment intenses pour dissiper de grandes quantités d’énergie. Toute cette énergie contribue à maintenir les intérieurs planétaires à des températures élevées. Cependant, en vertu du second principe de la thermodynamique, planètes et satellites se doivent de la restituer en surface, où la température est plus faible. En d’autres termes, planètes et satellites se refroidissent. La manifestation de surface de ce refroidissement est… le volcanisme. Passé ce constat, le volcanisme revêt, d’un objet à l’autre, des différences et particularités qui reflètent les propriétés de chacun de ces objets, que ce soit leur composition, les détails de leur histoire et bien sûr leur taille. Ainsi, comme nous allons le voir dans la première partie de cet article, le volcanisme que nous connaissons sur Terre, et qui est basé sur la fusion de roches silicatées, se retrouve avec des différences plus ou moins importantes sur les autres planètes telluriques, de même que sur la Lune. Plus loin, sur Cérès et au-delà de la ceinture d’astéroïdes, les éléments volatils (eau, azote, méthane et bien d’autres) dominent les compositions des corps solides et jouent un rôle clé dans le volcanisme qui anime ces objets.

 

Des magmas aux éruptions

Pour produire du volcanisme, il faut d’abord générer un magma, c’est-à-dire une roche fondue ou partiellement fondue. Dans le cas de la Terre, ces roches sont issues du manteau. La fusion intervient lorsque la température de ces roches, à une profondeur donnée, est supérieure à leur température de fusion. Comme pour la quasi-totalité des matériaux connus [2], la température de fusion des roches silicatées composant le manteau terrestre augmente avec la profondeur (et donc la pression). À l’inverse, le simple fait de remonter vers la surface peut provoquer, par décompression (et si la température est suffisante), la fusion. Sur Terre, les zones de fusion partielle sont situées vers 100 km de profondeur. Détail capital, les magmas sont plus légers que les roches qui les entourent, d’une part parce qu’ils sont liquides, d’autre part parce que les minéraux qui fusionnent en priorité sont moins riches en fer et en magnésium. Grâce à cette flottabilité*, ils vont pouvoir migrer vers la croûte, où ils seront stockés dans des réservoirs magmatiques.

En surface, la nature des éruptions est, elle aussi, contrôlée par des facteurs physico-chimiques. Lorsqu’un magma remonte vers la surface, les gaz qui y sont dissous ont tendance, par un processus d’exsolution*, à quitter le liquide pour former une multitude de bulles. Si le magma est peu visqueux, notamment parce qu’il est chaud ou riche en silice, les bulles vont pouvoir remonter facilement vers la surface. Le liquide dégazé va ensuite s’épancher le long des pentes du volcan sous la forme d’une coulée de lave, ou, s’il est plus visqueux, d’un dôme ou d’une aiguille [3]. On parle d’éruption effusive. À l’inverse, si le magma est trop visqueux, les bulles ne gaz ne parviennent pas à s’en échapper. Prisonnières, elles maintiennent une pression élevée qui conduit à une éruption explosive, au cours de laquelle un mélange de roches et de gaz est éjecté dans l’atmosphère sous forme de panache ou colonne plinienne [4]. Sur Terre, l’évolution d’une colonne plinienne dépend de sa capacité à ingérer de l’air. L’apport d’une grande quantité d’air allège la colonne et lui permet de monter jusqu’à la stratosphère. Si, au contraire, la quantité d’air absorbée est faible, la colonne s’effondre sous son propre poids et se transforme en coulée pyroclastique*, comme celle qui détruisit Pompéi en 79.

Les conditions de température et de pression, en surface ou en profondeur, ainsi que l’accélération de la gravité varient d’une planète à l’autre. On peut donc s’attendre à ce que les phénomènes que l’on vient de décrire changent plus ou moins selon la planète sur laquelle ils se produisent. Par exemple, la faible gravité martienne a sans doute eu un impact sur la migration des magmas, ainsi que sur la fréquence et l’intensité des éruptions. Pour un contraste de densité égal, la flottabilité des magmas est plus faible sur Mars que sur Terre. En conséquence, les chambres magmatiques devaient être de plus grandes dimensions et se trouver à de plus grandes profondeurs, si bien que seules les poches magmatiques les plus volumineuses ont dû atteindre la surface avant de se solidifier. Les éruptions martiennes devaient donc être a priori moins fréquentes, mais plus intenses que sur Terre. De plus, la température de surface, plus faible que sur Terre, a dû favoriser le développement de hautes colonnes pliniennes, phénomènes sans doute amplifiés par… la faible accélération de la gravité. À l’inverse, les conditions de température et de pression à la surface de Vénus suggèrent que les éruptions volcaniques y sont moins spectaculaires que sur Terre, l’atmosphère, très dense, n’y favorisant pas le développement de colonnes pliniennes. Par ailleurs, la faible altitude de la plupart des volcans vénusiens est sans doute imputable aux températures et aux pressions élevées, conditions qui favorisent l’épanchement des laves aux dépens de leur accumulation. Enfin, la longueur des canaux creusés par des coulées de lave, jusqu’à 6 800 km pour Baltis Vallis, suggère que les laves sont plus fluides et se refroidissent plus lentement que sur Terre, là encore à cause de la température de surface plus élevée.

Trois types De volcanisme

Trois types de volcanisme se manifestent à la surface de la Terre (fig. 1). Ils nous serviront de point de repère pour comprendre le volcanisme des autres planètes. Le plus répandu est aussi le moins visible, car il se produit au milieu des océans à des profondeurs de 2 000 à 3 000 m, le long de longues chaînes de montagnes appelées dorsales océaniques. C’est là que les planchers océaniques, ou si l’on préfère la croûte océanique, se forment à partir des magmas issus du manteau. Le deuxième type de volcanisme se produit à l’autre extrémité des planchers océaniques, lorsque ceux-ci plongent dans le manteau terrestre, par un phénomène appelé subduction*. Au contact de l’eau, et au fil des millions d’années, les minéraux des planchers océaniques se sont hydratés. En s’enfonçant dans le manteau, ces minéraux subissent des pressions de plus en plus fortes. Ils changent de structure cristalline, ce qui les conduit in fine à expulser l’eau qu’ils contenaient. Celle-ci est utilisée pour hydrater les roches du manteau environnant, avec pour conséquence l’abaissement de leur température de fusion et, si la température locale est suffisante, la production de magmas. Ces magmas viennent ensuite alimenter des volcans situés à l’aplomb des zones de subduction, comme les volcans d’Indonésie ou des Antilles. Au passage, notons que c’est ce processus qui est à l’origine de la croûte continentale.

Les volcans des dorsales et des zones de subduction sont intimement liés à la tectonique des plaques. On les trouve sur les frontières séparant ces plaques, frontières qu’ils participent à délimiter. Pourtant, d’autres volcans, comme ceux des îles Hawaï ou de l’île de la Réunion, sont situés bien à l’intérieur des plaques. Ce volcanisme intra-plaque, ou de point chaud, est lié à la présence de panaches mantéliques* (à ne pas confondre avec les panaches atmosphériques, ou colonnes pliniennes ; voir lexique) issus de la limite entre le noyau et le manteau, à 2 900 km de profondeur. L’arrivée en surface de la tête d’un panache engendre un volcanisme sans commune mesure avec le volcanisme contemporain. Il se caractérise par l’alternance de périodes très actives de quelques centaines d’années, durant lesquelles le taux d’émission des laves peut atteindre de 0,1 à 1kilomètre cube par seconde, et de périodes plus calmes et plus longues, de l’ordre de 10000ans. Cela conduit à la formation de grandes provinces magmatiques, ou trapps, correspondant à l’accumulation de coulées de lave sur des épaisseurs pouvant atteindre plusieurs kilomètres, comme dans le cas des trapps du Deccan. Cette région, située au nord-ouest de l’Inde, s’est formée il y a 65 millions d’années (Ma). Elle couvre environ 500 000 km2, et l’empilement des coulées de laves y atteint 3 000 m par endroits [5]

 

1. Les trois types de volcanisme sur Terre : dorsales océaniques, zones de subduction et points chauds. (© J.-L. Cheminée et al. (1993), institut de physique du globe de Paris)

 

Des trapps terrestres aux mers lunaires

Les trapps terrestres ont un équivalent sur notre Lune : les mers lunaires. Celles-ci, très majoritairement situées sur la face visible, correspondent à de grandes coulées basaltiques recouvrant les bassins d’impact formés entre 4,1 et 3,8 milliards d’années (Ga), lors du Grand Bombardement tardif. Toutefois, selon les datations disponibles, elles ne seraient pas la conséquence directe de ce bombardement, puisqu’elles se seraient mises en place quelques centaines de millions d’années plus tard, entre 3,5 à 3,0 Ga. Vers cette époque, le manteau lunaire aurait partiellement fondu, et le magma ainsi produit aurait migré à travers la croûte fracturée et amincie, pour venir remplir les bassins creusés par ces impacts.

Contrairement à ce que pensaient les astronomes du XIXe siècle, les cratères lunaires ne sont pas d’origine volcanique. En revanche, un autre témoin du passé volcanique de la Lune est la présence de longues crevasses sinueuses, appelées rimae ou rilles. Ces chenaux sont larges de quelques kilomètres et profonds de quelques centaines de mètres. Ils prennent naissance au voisinage de fractures et serpentent sur des longueurs pouvant atteindre quelques centaines de kilomètres. On compte près de 200 rilles, dont Rima Hadley, qui fut l’un des objectifs d’Apollo 15 et qui est observable avec un bon télescope amateur, comme le décrit Gilles Sautot dans un précédent numéro du magazine l’Astronomie. L’hypothèse privilégiée par les géologues, notamment sur la base des échantillons récoltés par Apollo 15, est que les rimae résultent de canaux ou de tunnels de lave émis au pied de volcans aujourd’hui éteints. Canaux et tubes de lave sont aussi observés sur Terre, mais avec des dimensions bien plus modestes. Le volcanisme à l’origine des rimae lunaires devait être associé à un taux d’éruption très élevé, sans commune mesure avec le volcanisme terrestre contemporain, mais en accord avec l’idée que les mers lunaires sont l’équivalent des grandes provinces magmatiques (les trapps) terrestres, à ceci près qu’elles ne sont pas liées à la présence de panaches dans le manteau lunaire.

 

2. Rima Hadley. (A) Vue depuis l’orbite. Le point orange indique le site d’Apollo 15. (NASA) (B) Dave Scott au bord de rima Hadley.

 

Tectonique des plaques versus plaque unique

La tectonique des plaques joue un rôle clé dans le volcanisme terrestre, notamment pour la formation des planchers océaniques. La surface de Vénus est dominée par de grandes plaines basaltiques semblables aux planchers océaniques terrestres. Cette similitude a laissé penser un temps que Vénus pouvait abriter une forme de tectonique des plaques, mais les données recueillies par la sonde Magellan ont invalidé cette idée. Des plaines volcaniques parsèment aussi la surface de Mars, mais celles-ci sont apparentées aux mers lunaires, les plus anciennes s’étant formées peu après la fin du Bombardement tardif, vers 3,8- 3,6 Ga. Pas de trace de tectonique des plaques, en revanche [6].

On sait aujourd’hui que la tectonique des plaques n’est à l’œuvre ni sur Vénus ni sur aucune des autres planètes rocheuses et satellites du Système solaire. Vénus, ainsi que Mars, sont des planètes à plaque unique, ou monoplaque, c’est-à-dire que leur lithosphère* tient d’un seul tenant et ne se renouvelle pas en continu [7]. Dans le cas de Vénus, l’absence de tectonique des plaques semble être liée à l’absence d’eau, ce qui accroît la résistance et la viscosité des roches. Les plaines basaltiques vénusiennes, dont nous venons de parler, sont beaucoup plus vieilles (au moins 500 Ma) que les planchers océaniques terrestres (au plus 180 Ma). En revanche, elles semblent avoir été mises en place dans un intervalle de temps assez court, lors d’épisodes de « resurfaçage » brefs (à l’échelle des temps géologiques), mais intenses.

Sur Mars, l’absence de tectonique des plaques est en partie responsable du gigantisme des volcans martiens, que nous allons bientôt rencontrer. Puisque la croûte reste fixe par rapport au panache responsable du volcanisme, il est possible de construire des édifices de taille imposante. Sur Terre, le fait que la croûte bouge par rapport aux panaches conduit à la formation d’une chaîne d’îles, comme la chaîne des Empereurs, dont les îles Hawaï sont la manifestation la plus récente [8] . Un autre facteur a certainement joué un rôle dans la taille des volcans martiens : la faible gravité de cette planète. Celle-ci permet de maintenir des édifices élevés, en évitant qu’ils ne s’affaissent sous l’effet de leur propre poids.

 

3. Des dômes en forme de crêpe (« pancake domes ») (A) et une corona (B) dans la région d’eistla, sur Vénus. Ces types de structures n’ont pas d’équivalents sur terre. (Nasa)

 

Coronae, « pancake Domes », et volcans géants

En l’absence de tectonique des plaques, c’est un volcanisme apparenté au volcanisme de point chaud, c’est-à-dire à l’ascension de panaches à travers le manteau, qui se manifeste sur Vénus et Mars. En plus des volcans boucliers (dont le plus grand, Maat Mons, culmine à 8 km d’altitude) et de longs canaux creusés par des coulées de laves, la surface de Vénus est parsemée de petits dômes volcaniques de quelques kilomètres à quelques dizaines de kilomètres de diamètre, les fameux « pancake domes », et de structures circulaires n’ayant pas d’équivalent terrestre, les coronae (fig. 3). Formés de laves très visqueuses, les « pancake domes » ne dépassent pas 1 km d’altitude et sont situés au voisinage de coronae et d’autres édifices volcaniques. Les coronae, quant à elles, sont constituées d’un anneau de crêtes et de fractures concentriques entourant une région centrale qui peut être un dôme, un plateau ou une dépression. Plus de 500 coronae ont été dénombrées, avec des diamètres allant, le plus souvent, de 100 à 1000km, et jusqu’à 2600km pour Artemis. L’hypothèse privilégiée est que les coronae résultent de l’interaction entre des panaches mantelliques et la lithosphère. Lorsqu’un panache arrive à la base de la croûte, il crée une poussée verticale sur celle-ci. Cela provoque un bombement de la croûte, qui s’affaisse une fois le panache disparu ou devenu inactif.

Mars est avant tout la planète des volcans géants (fig. 4). Olympus Mons, le plus grand édifice volcanique du Système solaire, en est l’exemple le plus emblématique. De sa base, il faut gravir un dénivelé de 22 km pour atteindre son sommet. Olympus est installé sur le flanc nord-ouest du dôme de Tharsis, qui supporte également Arsia, Ascraeus et Pavonis Montes, dont les sommets culminent tous entre 14 et 18 km d’altitude. Tharsis est sans doute lié à la poussée exercée par un gigantesque panache provenant de la limite entre le noyau et le manteau martiens, et qui semble avoir été actif dès 3,7 Ga et au moins jusqu’il y a 3,0 Ga. Il abrite aussi de nombreux volcans plus petits, que l’on peut diviser en deux classes, les tholi et les paterae. Les tholi sont des édifices en forme de dôme dont la pente est plus forte que celles des volcans géants. Les paterae ressemblent aux tholi, à ceci près qu’ils possèdent des caldeiras* plus étendues. oli et paterae sont plus anciens que les volcans géants et pourraient correspondre aux sommets d’anciens volcans boucliers recouverts par des coulées de lave plus récentes.

 

4. Les volcans géants de mars, Olympus (en haut à droite) et la chaîne des Tharsis : Arsia, Pavonis, et Ascraeus montes. Le schéma en médaillon compare les tailles d’Olympus mons et des volcans mauna Kea et mauna Loa, qui forment les îles Hawaï. (Nasa)

 

Des marées intenses: le volcanisme sur Io et Encelade

Il est temps maintenant de franchir la ceinture d’astéroïdes. Si l’on admet que le volcanisme découle du refroidissement d’une planète ou d’un satellite, on conçoit facilement que plus cet objet est gros, plus il a emmagasiné d’énergie, et donc plus le refroidissement est durable. De fait, c’est bien ce que l’on observe : la Terre est toujours active ainsi que Vénus. À l’inverse, les volcans martiens semblent avoir cessé de fonctionner il y a environ 500 Ma et, si l’on met de côté quelques événements ponctuels, la Lune est inactive depuis au moins 1,2 Ga. C’est pourquoi les images envoyées par Voyager 1 lors de sa traversée du système de Jupiter ont surpris les scientifiques. L’analyse de ces images a révélé la présence de panaches volcaniques, et donc d’éruptions, à la surface d’Io, le satellite galiléen le plus proche de Jupiter, et qui est à peine plus gros que la Lune. Les missions suivantes y ont mis en évidence plus de 400 volcans, associés soit à un volcanisme explosif (à l’origine des panaches observés par Voyager 1), soit à l’épanchement de coulées de lave. Ces dernières, composées de minéraux sulfurés et de silicates, sont émises depuis les planchers de grandes dépressions, les paterae, qui ressemblent aux caldeiras des volcans terrestres, ainsi que le long de fractures situées en plaine.

Étant donné la taille d’Io, il est peu probable que le chauffage radioactif ou le refroidissement séculaire fournissent la quantité d’énergie nécessaire à l’entretien de son activité volcanique. En revanche, Io subit des forces de marée très intenses de la part de Jupiter, liées notamment à l’excentricité de son orbite. Io est ainsi constamment déformé, ce qui produit de fortes frictions dans sa croûte et son manteau. La dissipation d’énergie qui en résulte est suffisante pour entraîner une élévation de la température provoquant une fusion partielle de la croûte et du manteau. L’histoire ne s’arrête pas là. Avec le temps, l’orbite d’Io aurait dû se circulariser. Si l’excentricité de cette trajectoire reste importante aujourd’hui, c’est à la faveur de résonances orbitales entre Io, Europe et Ganymède. Sans cela, Io graviterait sur une orbite circulaire et serait un corps beaucoup moins actif que le monde révélé par les missions spatiales.

Les forces de marée jouent aussi un rôle dans une autre forme de volcanisme, observée de façon saisissante sur Encelade. En 2005, la sonde Cassini a mis en évidence la présence de geysers au pôle Sud de ce petit satellite (252 km de rayon) de Saturne. Ces jets sont émis le long d’une série de 4 fractures, les « griffures de tigre », et ils s’élèvent jusqu’à 200 km d’altitude, venant alimenter l’anneau E de Saturne. Ils sont composés de vapeur d’eau, d’éléments volatils tels que le méthane et le dioxyde de carbone, ainsi que d’hydrocarbures et de fines particules de silicate. Les forces de marée interviennent sans doute à deux niveaux. D’une part en contrôlant l’ouverture et la fermeture des failles de surface (les « griffures de tigre »). Et d’autre part, comme dans le cas d’Io mais de façon moins extrême, les forces de marée pourraient fournir l’énergie nécessaire à l’entretien des geysers. Une hypothèse récemment mise en avant est que la dissipation de chaleur par les forces de marée serait localisée dans le noyau, supposé poreux, d’Encelade [9]. Selon ce scénario, ce noyau serait le siège d’une importante activité hydrothermale qui se répercuterait d’abord sur l’enveloppe liquide (l’océan) qui l’entoure, puis sur la croûte de glace d’Encelade (fig. 5).

 

5. Les geysers d’Encelade. (A) Vus par la sonde Cassini. (B) Un mécanisme possible expliquant la formation des geysers. Le noyau est le siège d’une activité hydrothermale entretenue par les forces de marée. L’arrivée d’eau chaude à la base de l’océan provoque la formation de panaches. Près des pôles, où le flux de chaleur issu du noyau est le plus élevé, les panaches secondaires amincissent localement la couche de glace, favorisant la fracturation de celle-ci et la circulation d’eau vers la surface. en surface, l’eau sous pression jaillit le long d’une série de fractures. (NASA/JPL Caltech)

 

Loin de la terre, le cryovolcanisme

Encelade n’est pas un cas isolé. En 1989, Voyager 2 a observé plusieurs geysers de diazote s’élevant depuis la surface de Triton, le plus gros satellite de Neptune. Des images UV réalisées entre 1999 et 2012 par le télescope spatial Hubble suggèrent, elles aussi, la présence épisodique de panaches de vapeur d’eau au pôle Sud d’Europe (un satellite de Jupiter voisin de Io). Ces jets, ou geysers, comme ceux d’Encelade, font partie d’un phénomène plus étendu, le cryovolcanisme, qui se manifeste à la surface des planètes naines et des satellites de glace des planètes géantes, et sur lequel les planétologues planchent depuis plus de deux décennies. Ici, les laves et magmas de roches silicatées cèdent la place à des « cryomagmas », mélanges de glaces, de matériaux volatils et de sels. Toutefois, un problème de taille surgit car, l’eau étant plus dense à l’état liquide qu’à l’état solide, ces cryomagmas sont a priori plus denses que la glace environnante. Comment font-ils, dans ces conditions, pour remonter en surface ? Des phénomènes de pressurisation ou de cristallisation fractionnée (dans le détail desquels nous n’entrerons pas) ont été avancés, mais la question reste débattue. Indépendamment de ce problème, le cryovolcanisme requiert aussi la présence de poches partiellement fondues à plus ou moins grande profondeur. Là encore, le mécanisme conduisant à la formation de ces poches n’est pas tranché, même s’il semble probable que l’énergie dissipée par les forces de marée y jouent un rôle clé.

Cela étant, des traces de cryovolcanisme ont été observées sur Titan, Pluton et Cérès. Ainsi, Sotra Facula, sur Titan, le plus gros satellite de Saturne, est un massif montagneux dont la structure, approximativement circulaire et possédant une dépression centrale, est typique d’un édifice volcanique. Toujours sur Titan, la présence de méthane dans l’atmosphère est un indice indirect d’une activité cryovolcanique récente ou contemporaine. Le méthane est en effet détruit dans la haute atmosphère de Titan, et sans un mécanisme de réapprovisionnement régulier, il aurait dû disparaître de cette atmosphère depuis longtemps. En revanche, si des réservoirs de méthane sont présents dans la croûte, le cryovolcanisme fournit un mécanisme adéquat pour réapprovisionner l’atmosphère en méthane. Sur Pluton, maintenant, Wright Mons culmine à 4 km d’altitude et possède, comme Sotra Facula, une dépression centrale qui en fait un excellent candidat au titre de cryovolcan. Qui plus est, le très
faible nombre de cratères d’impact sur ses flancs suggère qu’il a été actif récemment.

Enfin, retournons un instant dans la ceinture d’astéroïdes. Ahuna Mons, sur Cérès, est une montagne haute d’environ 5 km qui semble avoir surgi de nulle part (fig. 6A). Par analogie avec les dômes de lave que l’on rencontre sur Terre, les scientifiques pensent qu’il s’agit d’un dôme cryovolcanique. Sur notre planète, ce type de structures résulte de la remontée et de l’extrusion de laves relativement visqueuses et souvent riches en silice. À cause de leur viscosité élevée, ces laves ne peuvent pas s’écouler très loin de leur point d’émission. Elles s’accumulent autour de celui-ci, créant une structure en forme de dôme, comme dans le cas du volcan Chaitén, au Chili (fig. 6B). Mais revenons sur Cérès. Comme les dômes de lave terrestres, Ahuna Mons résulterait de la remontée et de l’extrusion d’un magma visqueux, à cela près que ce dernier ne serait pas composé de roches silicatées, mais d’un cryomagma.

6. (A) Ahuna mons, sur Cérès. (NAsA/JPL) (B) À comparer avec le dôme de lave du volcan Chaitén, au Chili. (sam Beebe)


Du volcanisme à l’apparition de la vie

Pour clore ce bref inventaire du volcanisme dans le Système solaire, on retiendra que des traces de volcanisme sont visibles à la surface de la plupart des objets visités par les sondes spatiales. Sur certains corps, comme Mercure, notre Lune et Mars, l’activité volcanique a cessé faute d’une source d’énergie, et les structures volcaniques que l’on y voit sont des vestiges du passé. En dehors de la Terre, l’observation d’éruptions volcaniques en temps réel est plus rare, mais spectaculaire : ce sont les volcans d’Io et les geysers d’Encelade, entretenus par la dissipation d’énergie liée aux forces de marée. Le cas de Vénus est plus délicat. L’atmosphère épaisse de notre voisine masque sa surface, et les conditions de température et de pression y imposent des manifestations plus discrètes que sur Io ou sur Terre. Une observation visuelle directe demanderait que l’on se trouve au bon endroit, au bon moment et avec les bons instruments. Bref, d’avoir un peu de chance. Pour le moment, il faut se contenter de preuves indirectes, comme les variations de température détectées en 2015 par Venus Express dans la région de Ganaki Chasma, qui sont sans doute liées à l’émission de gaz ou de laves.

Le volcanisme revêt enfin un intérêt que nous n’avons pas encore évoqué : il pourrait être étroitement lié à l’apparition de la vie sur Terre, en fournissant aux premières formes de vie connues, les bactéries, leur indispensable source d’énergie. Hypothèse notamment renforcée par la découverte de bactéries extrêmophiles, adaptées à des températures et à des pressions très élevées, autour des cheminées volcaniques des dorsales océaniques. Dans ces conditions, on se prend à imaginer que la vie a aussi pu démarrer en d’autres lieux, comme les océans souterrains des satellites de glace des planètes géantes. Mais nous quittons ici la planétologie comparée pour un domaine tout aussi passionnant : l’exobiologie.

 

Caldeira ou Caldera : Vaste dépression approximativement circulaire, en général de l’ordre de quelques kilomètres (sur terre) située au sommet de certains grands édifices volcaniques. souvent à fond plat, elles résultent d’une éruption qui a vidé la chambre magmatique sous-jacente.

Colonne plinienne : mélange de gaz et de fragments de roches volcaniques propulsé dans l’atmosphère sous forme de colonne (ou panache) et pouvant s’élever jusqu’à plusieurs dizaines de kilomètres. Le développement et l’ampleur d’une colonne plinienne dépendent de nombreux facteurs, notamment de la densité de l’air environnant, de la quantité d’air absorbé, et de la vitesse initiale des gaz et des roches volcaniques éjectés.

Coulée pyroclastique : Également appelée nuée ardente, c’est un mélange de gaz et de fragments de roches volcaniques (laves, scories, ponces, etc.) expulsés lors de l’éruption d’un volcan, et qui s’écoule à grande vitesse (quelques centaines de km/h) et au voisinage du sol sur les flancs de ce volcan.

Exsolution : Processus au cours duquel les gaz initialement dissous dans un magma à haute pression quittent ce magma. Ce phénomène est consécutif à la baisse de pression subie par le magma lorsqu’il remonte vers la surface.

Flottabilité : Ce terme désigne la poussée verticale exercée sur un magma par le milieu environnant, et qui lui permet de remonter en surface. elle est d’autant plus grande que la différence de densité entre le magma et le milieu environnant est élevée.

Lithosphère : enveloppe rigide externe d’une planète rocheuse constituée de la croûte et de la partie rigide du manteau. La lithosphère a donc une définition mécanique, par opposition à la croûte qui est la couche la plus externe d’une planète mais se définit par sa composition.

Panaches mantéliques : Dans les manteaux planétaires, un panache désigne une remontée de roches plus chaudes (et donc moins denses) que les roches environnantes. schématiquement, un panache est composé d’une bulle plus ou moins sphérique (la tête du panache) alimentée par un fin conduit. Lorsqu’il arrive près de la surface, un panache exerce une poussée sur la croûte. en réponse à cette poussée, la croûte se soulève, formant ainsi un bombement régional. Par analogie, dans les enveloppes externes des satellites de glaces, un panache correspond à la remontée de glace légèrement plus chaude que la glace environnante. Les panaches mantelliques ne doivent pas être confondus avec les panaches atmosphériques, ou colonnes pliniennes, qui se produisent en surface lors de certaines éruptions.

Subduction : Phénomène au cours duquel un plancher océanique, ou plus généralement une plaque tectonique, se courbe et plonge dans le manteau terrestre. Le plancher qui s’enfonce dans le manteau est désigné par le terme « slab ». en surface, les zones de subduction sont caractérisées par une fosse profonde pouvant atteindre une dizaine de kilomètres et, plus en avant, par une activité volcanique liée à la déshydratation du slab.

 

 

Frédéric DESCHAMPS | Academia Sinica, Taipei, Taïwan

 

1. sur les volcanismes terrestres et planétaires, ainsi que les mécanismes qui les contrôlent, voir notamment les numéros 92 (mars 2020) et 99 (novembre 2016) p. 26-37 de l’Astronomie. – 2. Une exception notable, et qui aura son importance lorsque nous parlerons du cryovolcanisme, est l’eau, dont la température de fusion diminue lorsque la pression augmente de 0 à 210 MPa (kbar). – 3. La construction d’un dôme de lave peut s’étaler sur des périodes allant de quelques mois à quelques centaines d’années, et la structure qui en résulte peut atteindre des hauteurs de plusieurs centaines de mètres. 4. Pour être plus précis, la vitesse d’ascension du magma joue aussi un rôle clé. si elle est trop faible, le gaz parvient à s’échapper et il se forme en surface un dôme très visqueux.- 5. Les trapps du deccan se sont mis en place dans un laps de temps d’environ un million d’années. Le volcanisme qui en est à l’origine est sans doute la cause principale de l’extinction de masse qui s’est produite à cette époque. Beaucoup moins actif aujourd’hui, le point chaud qui les a créés se situe maintenant sous l’île de la réunion, qu’il a également formée. – 6. L’interprétation de certaines observations magnétiques suggère qu’un bref épisode de tectonique des plaques s’est déroulé tôt dans l’histoire de Mars. Cette interprétation reste incertaine, et si un épisode de tectonique a effectivement eu lieu sur Mars, il a été sans suite. 7. Même sur Terre, la tectonique des plaques ne va pas de soi. Ce phénomène semble être apparu assez tardivement, il y a seulement 2 Ga environ, signe qu’il requiert des conditions thermiques, chimiques et mécaniques bien particulières permettant la déformation de la lithosphère. – 8. Notons tout de même que de sa base (à quelque 6 000 mètres sous la surface de l’océan Pacifique) jusqu’à son sommet, le Mauna Kea mesure un peu plus de 10 000 mètres… ce qui n’est pas rien.- 9. Voir à ce sujet le zoom du numéro 142 de l’Astronomie (octobre 2020), p. 26-37.

 

Saturne s’incline devant la fuite de ses satellites

Saturne s’incline devant la fuite de ses satellites

Selon une étude récente, l’inclinaison de l’axe de rotation de Saturne serait liée à la migration rapide des satellites de cette planète. De plus, le basculement de cet axe aurait débuté il y a un milliard d’années seulement et serait toujours en cours.

 

L’INCLINAISON DE L’AXE DE ROTATION DES PLANÈTES GÉANTES

Notre planète doit ses saisons au fait que son axe de rotation n’est pas perpendiculaire au plan de son orbite (le plan de l’écliptique), mais qu’il est incliné de 23,5° par rapport à la normale à ce plan. Il en va de même pour les planètes géantes. Ainsi, Saturne est inclinée de 26,7° par rapport à la perpendiculaire au plan de son orbite. C’est peu en comparaison d’Uranus qui, avec une inclinaison de 97,8°, est quasiment couchée sur son plan orbital, mais beaucoup par rapport à Jupiter, dont l’inclinaison est de seulement 3,1°. Pour compléter ce tableau, rappelons que l’inclinaison de Neptune est de 28,3°, donc proche de celle de Saturne. Les théories de formation des planètes géantes prédisent que, au moment de leur naissance, ces planètes devaient avoir une inclinaison très proche de zéro. Les inclinaisons observées aujourd’hui sont donc héritées d’événements ultérieurs. Dans le cas d’Uranus, l’hypothèse d’un impact violent survenu tôt dans l’histoire de cette planète est souvent avancée pour expliquer son inclinaison extrême. Saturne aurait, quant à elle, acquis son inclinaison vers la fin de l’épisode de migration des planètes géantes, il y a plus de 4 milliards d’années (Ga), sous l’effet d’un phénomène de résonance avec l’orbite de Neptune. Plus précisément, l’axe de rotation de Saturne est animé d’un mouvement de précession, lui-même provoqué par le couple de forces exercé par le Soleil sur le bourrelet équatorial de la planète, et c’est la résonance entre cette précession et la précession du plan de l’orbite de Neptune (ou précession nodale) qui serait responsable du basculement de Saturne.

UN NOUVEAU SCÉNARIO POUR SATURNE… ET JUPITER

C’est du moins ce que l’on pensait jusqu’à une découverte très récente, dont l’Astronomie s’est fait l’écho [1] : la migration des satellites de Saturne est plus rapide que prévue, notamment celle du plus gros d’entre eux, Titan, qui s’éloigne au rythme de 11 cm par an. Cette migration rapide serait liée à un type particulier de résonance, appelé resonance locking, qui peut s’expliquer dans le cadre de modèles de dissipation des forces de marée dans les planètes géantes. Selon Melaine Saillenfest, chercheuse au laboratoire IMCCE de l’Observatoire de Paris, la migration rapide des satellites de Saturne serait à son tour responsable du basculement de l’axe de rotation de cette planète [2].

Pour arriver à cette conclusion, Melaine Saillenfest et ses collègues s’appuient sur le fait que la période de précession de l’axe de rotation de Saturne ne dépend pas uniquement du couple de forces exercé par le Soleil, mais également des couples gravitationnels exercés par les satellites de Saturne, et tout particulièrement par Titan. Point capital, cette période est d’autant plus petite que les satellites sont éloignés de Saturne. La migration rapide de ces satellites implique qu’il y a 4 Ga, ceux-ci étaient beaucoup plus proches de Saturne que ce que l’on pensait jusqu’à présent. Les calculs montrent alors que la précession de l’axe de rotation de Saturne devait être trop rapide pour pouvoir entrer en résonance avec la précession nodale de Neptune (fig. 1). Faute de résonance, le basculement de cet axe de rotation n’a sans doute pas pu se produire à cette époque, comme le suppose l’hypothèse classique. Avec la migration de Titan, la précession de l’axe de rotation de Saturne a ralenti au cours du temps, jusqu’à ce qu’elle entre effectivement en résonance avec la précession nodale de Neptune, il y a environ 1 Ga (fig. 2). Ce serait à cette époque seulement que l’axe de rotation de Saturne aurait commencé à basculer, pour atteindre son inclinaison actuelle. Cette dernière n’est toutefois que temporaire car, selon les calculs, ce basculement se poursuivrait de nos jours, et l’inclinaison de Saturne pourrait doubler au cours des prochains milliards d’années.

 

1. Constante de précession en fonction du temps, calculée en tenant compte de la migration supposée de titan. Cette constante (qui ne l’est pas puisqu’elle varie avec le temps) contrôle la période de précession de l’axe de rotation : plus elle est élevée, plus cette période est petite. elle dépend également du moment d’inertie adimensionné (I/MR2) de saturne, noté λ, et dont la valeur est comprise entre 0,20 et 0,24. La ligne bleue représente la valeur de cette constante pour laquelle la précession de l’axe de rotation de saturne entre en résonance avec la précession de l’orbite de neptune, ce qui déclenche le basculement de saturne. (© Saillenfest et al., 2021)

 

2. Variation de l’inclinaison de l’axe de rotation de saturne en fonction du temps (courbe noire) pour un moment d’inertie adimensionné (λ) égal à 0,229. Dans ce cas, l’inclinaison se maintient autour de 5°, jusqu’à ce que la précession de l’axe de rotation de saturne entre en résonance avec la précession de l’orbite de neptune, il y a environ 1 milliard d’années.(© Saillenfest et al., 2021)

 

La validité de ce scénario dépend toutefois d’un autre paramètre : le moment d’inertie de Saturne. Ce paramètre mesure la répartition radiale de masse à l’intérieur d’une planète et il modifie, lui aussi, la période de la précession de l’axe de rotation. Malheureusement, dans le cas de Saturne, sa valeur exacte est mal connue. Rapportée au produit de la masse et du carré du rayon (I/MR2), elle est comprise entre 0,20 et 0,24. Pour que la migration de Titan soit effectivement responsable du basculement de Saturne, le moment d’inertie doit se situer dans une plage plus réduite, entre 0,224 et 0,237. Moyennant ce petit bémol, ce qui est valable pour Saturne l’est aussi pour Jupiter. Comme nous l’avons vu, l’inclinaison de Jupiter est faible. Mais cette situation n’est peut-être que temporaire, car, d’une part, les quatre principaux satellites de Jupiter (Io, Europe, Ganymède et Callisto) s’éloignent d’elle, et d’autre part la précession de son axe de rotation est en résonance avec la précession nodale d’Uranus. Si l’hypothèse de Melaine Saillenfest est correcte, Jupiter serait elle aussi en train de basculer, et son inclinaison pourrait atteindre 30° lors des 5 prochains milliards d’années.

 

Frédéric Deschamps IESAS, Taipei, Taïwan

[1] Voir l’Astronomie no 141 de septembre 2020, p. 4-7.
[2] Saillenfest M. et al. (2021), « The large obliquity of Saturn explained by the fast migration of Titan », Nature Astronomy, 641, doi: 10.1038s41550-020-01284-x.

Des volcans sur le plancher de l’océan souterrain d’Europe

Des volcans sur le plancher de l’océan souterrain d’Europe

Selon des simulations numériques, des volcans actifs seraient présents sur le plancher de l’océan souterrain d’Europe, la seconde lune de Jupiter par la distance, et l’énergie nécessaire à l’entretien de ce volcanisme proviendrait de l’énergie dissipée par les forces de marée.

 

Europe, une lune de Jupiter

Avec un rayon de 1 561 km, Europe est le plus petit des satellites galiléens de Jupiter. Sa surface, très lisse et dépourvue de cratères, est parsemée de longues rayures. Elle est de plus composée de glace d’eau avec, par endroits, des dépôts de sel (chlorure de sodium). La masse volumique d’Europe (3 000 kg/m3) suggère que ce corps est composé d’un gros manteau rocheux d’environ 1 400 km de rayon avec, au centre, un petit noyau métallique. Mais Europe est surtout connue pour abriter un océan souterrain d’eau et de sels sous une coquille de glace de quelques dizaines de kilomètres d’épaisseur. Pour peu qu’une source de chaleur soit également présente, les océans souterrains constitueraient un environnement potentiellement favorable à l’apparition de vie en dehors de la Terre. À ce titre, Europe est l’une des cibles privilégiées des prochaines missions vers le système de Jupiter.

Comme Io sa voisine, Europe est soumise à des forces de marée exercées par Jupiter, mais de façon moins extrême. Ces forces déforment l’intérieur d’Europe, et une petite fraction de l’énergie mise en jeu lors de ces déformations est dissipée par friction sous forme de chaleur. L’intensité des forces de marée et la quantité d’énergie dissipée dépendent de plusieurs facteurs, en particulier de l’excentricité de l’orbite d’Europe. Plus celle-ci est élevée, plus l’énergie dissipée est importante. Avec le temps, l’orbite d’Europe aurait dû se circulariser, mais des résonances avec les orbites d’Io et de Ganymède empêchent ce phénomène de se produire. Plus généralement, l’excentricité de l’orbite d’Europe et donc la quantité de chaleur dissipée ont sans doute beaucoup varié au cours du temps.

La dissipation d’énergie de marée augmente la quantité de chaleur disponible à l’intérieur d’Europe, ce qui a pour effet de modifier son évolution. La dissipation d’énergie dans la couche de glace externe joue sans doute un rôle clé pour limiter la croissance de cette enveloppe (et donc pour maintenir un océan relativement épais), ainsi que pour entretenir des geysers en surface [1] . Toutefois, la dissipation d’énergie par les forces de marée peut aussi se produire dans le manteau rocheux. Cette énergie viendrait alors s’ajouter à l’énergie libérée par la désintégration d’isotopes radioactifs présents dans le manteau rocheux d’Europe, ce qui aurait pour effet de modifier sa dynamique et son évolution. Dans un article publié dans la revue Geophysical Research Letters, et à laquelle ont participé des chercheurs du Laboratoire de planétologie et de géodynamique de Nantes (LPGN), Marie Běhounková, de l’université Charles de Prague, a étudié ces conséquences en détail [2] . Elle conclut que des volcans actifs pourraient être présents de nos jours au sommet de ce manteau ou, si l’on préfère, à la base de l’océan souterrain.

 

1. Répartition globale (a) et polaire (b) de la quantité de magma prédite par les simulations de Marie Běhounková. Les zones entourées d’un cercle noir indiquent les régions dans lesquelles le volume de magma est supérieur à 0,5 million de km3. (Běhounková et al., 2021)

 

Du volcanisme actif au sommet du noyau

Pour arriver à cette conclusion, Marie Běhounková a réalisé une série de calculs simulant le transfert de chaleur par convection dans le manteau d’Europe au cours du temps. Ce type de simulation permet d’estimer la température, et par extension la production de magma (ou plus précisément de roches fondues), en un point donné d’un système. Dans ce cas précis, les simulations prennent en compte plusieurs paramètres importants, notamment la production de chaleur par les isotopes radioactifs et la dissipation de chaleur par les forces de marée. L’intensité du chauffage radioactif dépend de la quantité d’isotopes radioactifs initialement présents et décroît exponentiellement avec le temps. Plus la quantité initiale d’isotopes est faible, moins la production de magma est durable. L’intensité du chauffage de marée dépend de l’excentricité de l’orbite d’Europe et peut donc varier au cours du temps. Les simulations de Marie Běhounková montrent que la dissipation d’énergie par les forces de marée apporte un chauffage d’appoint qui permet, lorsque l’excentricité est suffisamment élevée, de maintenir une production de magma. Selon ces calculs, des pics de production de magma se concentrant autour des régions polaires ont ainsi pu se produire jusqu’à des périodes très récentes (fig. 1), et ce même si la quantité initiale d’éléments radioactifs est modeste.

Une activité volcanique récente, ou même actuelle, à la base de l’océan souterrain d’Europe est donc parfaitement envisageable. Dans ce cas, un certain nombre d’indices pourrait étayer cette hypothèse. Le volcanisme et l’activité hydrothermale qui lui est associée devraient en effet s’accompagner de l’émission de dioxyde de carbone (CO2), de méthane (CH4), et de dihydrogène (H2). La présence d’édifices volcaniques sur le plancher océanique d’Europe pourrait aussi légèrement modifier le champ de gravité de ce satellite. De tels indices sont ténus et difficilement identifiables, mais leur recherche pourrait faire partie des buts des missions Juice (Esa) et Europa-Clipper (Nasa), qui sont en cours de développement. Enfin, faut-il rappeler qu’une activité volcanique à la base de l’océan d’Europe ouvrirait des perspectives exobiologiques particulièrement intéressantes ? Elle permettrait, via une activité hydrothermale, de fournir la chaleur nécessaire à l’entretien d’une hypothétique forme de vie primitive.

Frédéric Deschamps IESAS, Taipei, Taïwan

 

[1]. À ce jour, aucun geyser n’a été formellement identifié à la surface d’Europe. Cependant, plusieurs indices, en particulier des images UV prises par le télescope Hubble, font penser que ce phénomène est bien présent aux pôles de ce satellite. [2]. BĚHOUNKOVÁ M. et al., Tidally induced magmatic pulses on the oceanic floor of Jupiter’s moon Europa, Geophysical Research Letters, 48, e2020GL090077, doi : 10.1029/2020GL090077.l’Astronomie.

Les planètes géantes – De Jupiter à Netpune

Les planètes géantes – De Jupiter à Netpune

Qu’est-ce qu’une planète géante ? À l’origine, ce terme a été utilisé pour désigner les quatre plus grosses planètes du Système solaire, Jupiter, Saturne, Uranus et Neptune. Celles-ci ont une particularité en commun : elles sont très volumineuses, d’où leur nom ; leur atmosphère est dominée par l’hydrogène et, en moindre proportion, l’hélium, ce qui se traduit par une faible densité. Ces propriétés les différencient des planètes rocheuses, plus proches du Soleil, et aussi plus petites et plus denses.

 

1. Les quatre planètes géantes. De gauche à droite : Saturne, Jupiter, Uranus et Neptune. (Nasa)

 

Cette dichotomie entre les planètes du Système solaire trouve une explication simple à la lumière de son scénario de formation. Il est aujourd’hui généralement admis que, dans le cas du Système solaire, les planètes se sont formées par accrétion de matière solide au sein d’un disque protoplanétaire, résultant lui-même de l’effondrement d’une nébuleuse en rotation sur elle-même et de la condensation du gaz en poussières solides, la partie centrale formant le proto-Soleil. À proximité du Soleil, la température était suffisamment élevée pour que seuls les éléments réfractaires (éléments dont la température de condensation est élevée) soient sous forme solide ; de leur accrétion sont nées les planètes telluriques (dites aussi rocheuses), petites et denses; la Terre est la plus grande et la plus massive d’entre elles. En revanche, au-delà de quelques unités astronomiques, la température du disque protoplanétaire était suffisamment basse pour permettre la condensation sous forme de glace des éléments les plus abondants dans le cosmos, associés à l’hydrogène, pour former des molécules simples (H2O, CH4, NH3…). Ces molécules, bien plus abondantes que celles formées à partir des éléments réfractaires des planètes rocheuses, ont permis la formation de noyaux très massifs, pouvant atteindre la dizaine de masses terrestres ; leur champ de gravité a alors été suffisant pour permettre la capture par le noyau de la matière gazeuse environnante, principalement constituée d’hydrogène et d’hélium. C’est ainsi que sont nées les planètes géantes du Système solaire. C’est ce que l’on appelle le modèle de nucléation, par opposition au modèle d’effondrement direct de la matière protosolaire environnante.

À quelle distance du Soleil la frontière entre planètes rocheuses et planètes géantes se trouve-t-elle ? C’est celle où est intervenue la condensation des molécules simples associées à l’hydrogène. Parmi ces molécules, il se trouve que la molécule d’eau H2O joue un rôle majeur, pour deux raisons : d’une part, l’oxygène est, après l’hydrogène et l’hélium, l’élément le plus abondant dans l’Univers ; d’autre part, lorsque la température décroît, la molécule H2O est, de loin, la première à passer de l’état de gaz à celui de glace. On appelle « ligne des glaces » cette frontière séparant les deux classes de planètes ; les modèles la situent à une température d’environ 180-200 K (environ –80 °C) et une distance au Soleil d’environ 3 UA (unités astronomiques) au moment de la formation des planètes.

Revenons à nos quatre planètes géantes. Un simple coup d’œil nous montre qu’elles se séparent en deux catégories bien distinctes. D’une part, Jupiter et Saturne, dont les masses sont respectivement 318 et 90 fois celle de la Terre, sont formées principalement de gaz protosolaire ; on les appelle les géantes gazeuses. D’autre part, Uranus et Neptune, dont les masses valent respectivement 14 et 17 masses terrestres, sont formées à plus de 50 % de leur noyau de glace initiale ; ce sont les géantes glacées. Comment expliquer cette différence ? On admet généralement que Jupiter s’est formée juste au-delà de la ligne des glaces, là où la quantité de matière solide était maximale, tandis que Saturne s’est formée un peu plus loin ; quant à Uranus et Neptune, elles ont dû se former à plus grande distance du Soleil, dans une région où la matière solide disponible était bien moins abondante. Disons tout de suite que ce scénario (qui a le mérite de la simplicité) s’est considérablement complexifié au cours des deux dernières décennies, grâce à l’introduction des simulations numériques permettant de retracer l’histoire dynamique des corps du Système solaire. Nous savons aujourd’hui que les planètes géantes ne se sont pas formées là où elles sont aujourd’hui, mais ont connu une migration importante au cours de leur histoire ; nous y reviendrons.

 

2. La mission Cassini-Huygens. (Nasa)

Quatre siècles d’exploration

Si les planètes Jupiter et Saturne, aisément visibles à l’œil nu dans le ciel nocturne, sont connues depuis l’Antiquité, il n’en est pas de même des deux géantes glacées, Uranus et Neptune. C’est en 1781 que l’astronome anglais William Herschel découvre Uranus, grâce à un nouveau type de télescope qu’il a développé. La planète Neptune, quant à elle, est découverte en 1846 par l’astronome prussien Johann Galle, à la suite des calculs menés en parallèle par John Couch Adam et Urbain Le Verrier pour rendre compte des perturbations observées sur l’orbite d’Uranus. L’exploration de Jupiter et de Saturne débute au début du XVIIe siècle avec la lunette de Galilée. Jean-Dominique Cassini, nommé premier administrateur de l’Observatoire de Paris en 1669 et observateur exceptionnel, réalise les meilleurs dessins de Jupiter sur lesquels figurent les zones et les bandes, ainsi que la Grande Tache rouge, et détermine la période de rotation de la planète. En 1655, l’astronome hollandais Christiaan Huygens met en évidence la présence d’un anneau autour de Saturne, responsable de l’aspect changeant de la planète qui dépend de la position de la Terre par rapport au plan de cet anneau. Pendant deux siècles, les observations se cantonnent à la surveillance des détails morphologiques, par le dessin puis, à la fin du XIXème siècle, par la photographie. Ce n’est que dans le courant du XXème siècle que l’atmosphère de Jupiter se dévoile grâce aux premières mesures spectroscopiques, avec la mise en évidence du méthane (CH4) et de l’ammoniac (NH3) ; la présence du constituant principal, l’hydrogène moléculaire (H2), suggérée par Gerhard Kuiper en 1952, ne sera confirmée qu’en 1961. Les années 1970 voient aussi le début de la spectroscopie infrarouge qui permet la détection de nombreux constituants mineurs dans l’atmosphère de Jupiter, et un peu plus tard dans celle de Saturne (en particulier CO, H2O, PH3), puis, dans la stratosphère, les dérivés de la photochimie du méthane, C2H2 et C2H6.

Les années 1970 voient le début de l’exploration spatiale des planètes géantes, d’abord avec les sondes Pioneer 10 et 11, lancées en 1972-1973, puis avec les sondes Voyager 1 et 2, lancées en 1977, à la faveur d’une configuration orbitale exceptionnellement favorable des quatre planètes géantes. Voyager 1 survole Jupiter en 1979, puis Saturne et son satellite Titan en 1980 ; Voyager 2 survole Jupiter en 1979, Saturne en 1981, puis Uranus en 1986 et enfin Neptune en 1989. La mission Voyager constitue un exploit technologique et scientifique sans précédent. Parmi les découvertes principales, on peut citer la complexité de la structure dynamique de Jupiter, le volcanisme actif de son satellite Io, la complexité des anneaux de Saturne, l’existence de molécules prébiotiques dans l’atmosphère de Titan, et les structures inattendues des magnétosphères d’Uranus et de Neptune. La base de données de Voyager sert toujours de référence actuellement, en particulier dans le cas d’Uranus et de Neptune, qui n’ont pas été visitées par d’autres sondes spatiales depuis leur survol par Voyager 2.

Après la phase des survols vient celle de l’exploration approfondie depuis l’orbite planétaire et de l’envoi de sondes de descente vers les planètes ou leur satellite. Le vaisseau spatial Galileo, lancé en 1989, s’approche de Jupiter en 1995 et y largue une sonde de descente qui donnera les premières mesures in situ de l’atmosphère jovienne ; l’orbiteur, quant à lui, fonctionnera jusqu’en 2003. En dépit du blocage de sa grande antenne, rendue ainsi inutilisable, il fera d’importantes découvertes sur les satellites, en particulier sur la présence probable d’un océan liquide salé sous la surface glacée d’Europe. L’étape suivante est l’ambitieuse mission Cassini-Huygens vers Saturne (fig. 2), menée conjointement par les agences spatiales américaine et européenne. La Nasa a la responsabilité de l’orbiteur Cassini, tandis que l’ESA a celle de la sonde Huygens, destinée à se poser sur le sol de Titan. Lancée en 1997, la mission est un superbe succès scientifique et technique ; c’est aussi un succès éclatant en matière de coopération internationale. La mission prendra fin en 2017, la sonde plongeant dans l’atmosphère de Saturne. Le bilan scientifique est considérable, qu’il s’agisse de la planète, de ses anneaux, de Titan ou de ses autres satellites. Dans le cas de Saturne, on retiendra particulièrement le suivi de la tempête géante de décembre 2010 et l’observation de la structure cyclonique hexagonale du pôle Nord.

Enfin, la dernière mission d’exploration de Jupiter, lancée par la Nasa en 2011, est toujours en opération, en orbite autour de la planète. Destinée à mieux comprendre le scénario des origines de la planète, la sonde Juno a fait des découvertes inattendues quant à la structure de l’atmosphère profonde et la structure interne de la planète qui se sont montrées très différentes des prévisions par les modèles ; nous y reviendrons.

Et Uranus et Neptune ? Oubliées des programmes d’exploration spatiale après le succès de la mission Voyager, les deux planètes ont pu, heureusement, bénéficier des observations du télescope spatial HST (Hubble), ainsi que des observatoires spatiaux ISO et Spitzer dans l’infrarouge, et Herschel dans le domaine submillimétrique. Les observations du HST, complétées par les observations depuis les télescopes terrestres, ont notamment permis d’étudier les variations saisonnières des deux planètes.

 

Composition atmosphérique

Dans l’atmosphère riche en hydrogène des planètes géantes, les constituants apparaissent principalement sous leur forme hydrogénée : CH4, NH3, H2O, PH3, GeH4, AsH3. Dans le cas d’Uranus et de Neptune, seul le méthane apparaît dans les spectres infrarouges, car les autres constituants (en dehors de l’hydrogène) ne sont pas sous forme gazeuse aux niveaux observables par spectroscopie (de pression de l’ordre de quelques bars au plus). Trois autres catégories d’éléments sont présents : (1) dans la troposphère, des constituants présents dans les couches profondes peuvent être transportés par des mouvements verticaux jusqu’à des niveaux où ils sont observables, la vitesse du transport vertical étant supérieure à celle de leur destruction ; c’est le cas de CO et PH3 dans Jupiter et Saturne ; (2) les hydrocarbures issus de la photodissociation du méthane (principalement C2H2 et C2H6), (3) des espèces oxygénées provenant de l’extérieur, suite à la chute d’impacts cométaires et/ou micrométéoritiques. L’exemple le plus spectaculaire a été la collision entre Jupiter et la comète Shoemaker-Levy 9 en 1994 qui a entraîné la formation de plusieurs molécules, dont H2O, HCN et CO, dans la stratosphère de Jupiter. Plus tard, en 1997, le satellite ISO a montré que l’eau était présente dans la stratosphère des quatre planètes géantes ; c’est aussi le cas de CO et de CO2. Notons que des espèces deutérées sont aussi observées : HD et CH3D.

 

Les rapports d’abondance et la formation des géantes

À partir de l’abondance des constituants mineurs, il est possible de déterminer des rapports d’abondance élémentaires et isotopiques qui peuvent apporter des contraintes aux modèles de formation planétaire. C’est le cas, en particulier, du rapport He/H. Dans les géantes glacées, ce rapport apparaît compatible avec la valeur protosolaire (celle-ci étant mesurée dans le vent solaire). Dans le cas de Jupiter et Saturne, on observe un appauvrissement de l’hélium gazeux, que l’on attribue à la condensation de l’hélium au sein de l’océan d’hydrogène métallique présent dans l’intérieur des planètes. Ce processus n’est pas attendu dans Uranus et Neptune dont la pression interne n’est sans doute pas suffisante pour que l’hydrogène passe de l’état moléculaire à l’état métallique.

Les abondances des éléments C, N, O, mesurées par rapport à l’hydrogène, fournissent un diagnostic permettant de contraindre les modèles de formation des planètes géantes. Ce rapport devrait être constant pour les quatre planètes géantes et égal à la valeur protosolaire dans le scénario de formation directe par effondrement. Il devrait au contraire être supérieur dans le cas du modèle de nucléation défini ci-dessus, l’enrichissement augmentant de Jupiter à Neptune. Les observations sont en accord avec le modèle de nucléation. Les mesures spectroscopiques dans l’infrarouge proche montrent que l’abondance du méthane augmente de Jupiter à Neptune. De plus, dans le cas de Jupiter, les mesures de la sonde Galileo ont montré un enrichissement de l’ordre de 3 par rapport à la valeur solaire pour les rapports C/H, N/H et S/H (fig. 3), apportant, là aussi, un argument décisif en faveur du modèle de nucléation. La mesure du rapport O/H, sensiblement inférieure à la valeur solaire, a toutefois posé une énigme. Cet appauvrissement a été attribué à des mouvements convectifs locaux qui rendraient la mesure non représentative de l’ensemble de la planète ; ce constat a été à l’origine de la mission Juno.

 

 

3. Abondances élémentaires dans Jupiter, comparées aux valeurs solaires, mesurées par la sonde Galileo en décembre 1995. Les éléments C, n, s, Ar, Kr et Xe montrent un enrichissement de l’ordre de 3. L’appauvrissement de He et ne est expliqué par un phénomène de condensation interne. Celui de o serait dû à des phénomènes de convection interne au niveau où la mesure a été obtenue. D’après owen et al., Science, 1999. Les croix correspondent à une réévaluation suite à une mise à jour des abondances solaires. (Owen et Encrenaz 2006)

Structure thermique et nuageuse

Comme dans le cas général des atmosphères planétaires, la structure atmosphérique des planètes géantes est régie par la loi des gaz parfaits et celle de l’équilibre hydrostatique. Elle se caractérise par une région convective, la troposphère qui, à la différence des planètes rocheuses, s’étend jusqu’à des profondeurs de plus de 1000 kilomètres et des pressions de plus de 1 000 bars. Le gradient y est adiabatique, avec une valeur proche de –2 K/km, presque la même pour les quatre planètes géantes, car elles sont toutes majoritairement constituées d’hydrogène et d’hélium. La tropopause, située pour les quatre planètes à un niveau de pression d’environ 100 mbars, marque la frontière entre la zone convective et la stratosphère, dans laquelle la température augmente avec l’altitude ; c’est un minimum de température dans le profil thermique (fig. 4). Dans la stratosphère, la remontée de température est due à l’absorption du rayonnement solaire par le méthane et divers aérosols provenant d’hydrocarbures issus de la photolyse du méthane. À plus haute altitude, d’autres mécanismes interviennent, propres à chaque planète, comme les ondes de gravité ou les particules énergétiques.

 

4. structure thermique et nuageuse des quatre planètes géantes. Dans la troposphère, les traits horizontaux indiquent les niveaux de condensation des molécules indiquées. Dans la stratosphère, on observe la formation d’aérosols suite à la condensation de certains hydrocarbures (C2H2, C2H6) dérivés de la photolyse du méthane. La localisation des couches nuageuses est déduite de modèles thermochimiques et est globalement en accord avec les observations.

Circulation atmosphérique

Depuis le XVIIe siècle, les observateurs ont remarqué la structure en zones et en bandes de Jupiter, alternées en latitude ; celle-ci est présente aussi sur Saturne, bien que moins contrastée. Elle est interprétée comme la signature d’une circulation de Hadley[1] dans une atmosphère en rotation rapide, et, comme dans le cas des planètes rocheuses, elle est induite par la différence d’ensoleillement entre l’équateur et les pôles. La direction des vents zonaux s’inverse entre les zones et les bandes. Les zones, plus claires, sont des régions de mouvement ascendant, dans lesquelles l’ammoniac condense ; les bandes sont des régions de mouvement descendant, dépourvues de nuages, dans lesquelles le rayonnement infrarouge pénètre jusqu’à une pression de quelques bars. C’est dans ces régions que les molécules mineures de la troposphère ont été détectées. Au sein des bandes, on trouve des régions plus localisées, les « hot spots », particulièrement sèches et profondes. C’est dans l’un de ces «puits » qu’a pénétré la sonde Galileo le 7 décembre 1995. Celle-ci a fonctionné jusqu’à une profondeur de 22 bars, mesurant en particulier les abondances des éléments par spectrométrie de masse (fig. 3), le régime des vents et les structures nuageuses. Elle a pu constater que les nuages étaient beaucoup plus rares que ce que prédisaient les modèles photochimiques, confirmant la nature particulière du point de chute. C’est ce qui expliquerait la faible abondance de l’oxygène mesurée par Galileo (fig. 3) qui n’est sans doute pas représentative de l’ensemble de la planète. Cette constatation a été à l’origine de la mission Juno, dont l’un des objectifs est la mesure du rapport O/H dans les zones profondes de la planète, afin de contraindre son modèle de formation. Grâce aux mesures de Juno, une autre explication a été proposée pour l’appauvrissement de NH3 et H2O dans la zone tempérée, lié à la présence de nombreux orages.

 

5. La tempête géante de décembre 2010 observée par la sonde Cassini. Au cours des mois qui ont suivi son éruption, le panache s’est étendu en longitude. (NASA/JPL-Caltech/SSI)

 

Une autre particularité de la planète Jupiter est la Grande Tache rouge, régulièrement observée elle aussi dès le XVIIe siècle. Il s’agit d’un vaste tourbillon anticyclonique, grand comme la Terre, situé dans l’hémisphère Sud à basse latitude, à la frontière entre la bande équatoriale sud et la zone tempérée sud. La stabilité de cette structure a longtemps posé problème aux modélisateurs. Depuis un siècle, on observe un lent rétrécissement de la tache, qui devient de plus en plus circulaire ; l’origine de ce phénomène reste, lui aussi, inexpliqué.

Dans le cas de Saturne, la structure en bandes et zones est présente, mais moins visible, car les nuages d’ammoniac, plus abondants, donnent à la planète une couleur plus claire. Pas de tache équivalente à la Grande Tache rouge de Jupiter, mais en revanche un phénomène, observé depuis plus d’un siècle, qui se reproduit environ tous les trente ans (la période de révolution de la planète) : il s’agit d’une tempête géante qui prend sans doute naissance dans le nuage d’eau profond, à une pression d’une dizaine de bars. La sonde Cassini a pu observer un tel phénomène en décembre 2010 et suivre son évolution dans les années suivantes (fig. 5). La structure hexagonale du pôle Nord de Saturne a également surpris les observateurs : elle est constituée de six cyclones entourant le pôle Nord ; elle n’a pas son équivalent au pôle Sud. En revanche, la sonde Juno a montré que les deux pôles de Jupiter étaient dotés de ce type de structure (fig. 6).

 

6. Les cyclones polaires sur saturne (pôle nord, vu par Cassini) et Jupiter (pôle sud, vu par Juno). (NASA)

 

Les géantes glacées Uranus et Neptune sont bien moins connues que les gazeuses. Depuis les survols par Voyager 2, notre connaissance s’appuie surtout sur les images du HST et des grands télescopes au sol. Les bandes et les zones sont bien moins marquées que dans le cas de Jupiter et de Saturne, et les structures semblent évoluer sensiblement au fil des saisons. Ainsi, Neptune présentait en 1989, au moment du survol par Voyager 2, une grande tache sombre qui a disparu dans les années qui ont suivi. La planète Uranus était dépourvue de structures lors du survol de Voyager 2 en 1986, alors que son axe de rotation était tourné vers le Soleil ; en 2006, à proximité de l’équinoxe, elle présentait une structure en bandes et en zones ainsi que des taches isolées (fig. 7). La condensation du méthane intervient sur les deux planètes, ainsi que la formation d’aérosols produits par la condensation de ses dérivés photochimiques.

 

7. Les planètes Uranus (gauche) et neptune (droite) photographiées par le HST en 2005 et 2011 respectivement.

Structure interne

Notre connaissance de l’intérieur des planètes géantes s’appuie sur une modélisation théorique des états de la matière à haute pression et haute température, contrainte par des données observables indirectes, à commencer par la masse, le rayon et le champ de gravitation. Dans le cas de Jupiter et Saturne, le champ de gravitation est très bien connu grâce aux sondes Galileo et Cassini. Une autre information nous est fournie par l’énergie interne des planètes. Depuis le début des mesures par spectroscopie infrarouge, en 1969, on sait que Jupiter possède une source interne d’énergie ; sa température effective est de 124 K, alors qu’elle devrait être de 110 K si elle ne rayonnait que l’énergie solaire absorbée. Saturne et Neptune sont aussi dotées d’une source interne alors qu’Uranus en est dépourvue. L’origine la plus plausible de la source interne est le refroidissement des planètes parvenues au dernier stade de leur contraction suite à l’effondrement du gaz sur le noyau initial. Dans le cas de Jupiter et de Saturne, nous avons vu que la condensation de l’hélium dans la phase métallique de l’hydrogène pouvait être une source d’énergie supplémentaire. La différence entre Uranus et Neptune reste mal comprise ; elle se manifeste aussi par une circulation atmosphérique verticale plus intense sur Neptune, ainsi qu’une température stratosphérique plus élevée. Avant l’arrivée de la sonde Juno, le modèle de structure interne de Jupiter généralement admis incluait un noyau de glaces et de roches, surmonté d’une enveloppe d’hydrogène métallique, avec à l’interface une pression de l’ordre de 40 Mbar et une température de 23 000 K, puis, à 0,85 rayon du centre, une enveloppe d’hydrogène moléculaire. Ce modèle a été remis en question par le gravimètre de la sonde Juno, dont les mesures suggèrent qu’il n’y a pas de séparation nette entre le noyau et la couche d’hydrogène métallique. La dilution du noyau dans l’hydrogène métallique pourrait résulter d’une collision entre la planète et un autre objet d’une quinzaine de masses terrestres.

Les modèles de structure interne de Saturne font intervenir, comme dans le cas de Jupiter, un noyau central de glaces et de roches surmonté par un océan d’hydrogène liquide, puis une couche d’hydrogène moléculaire, avec à l’interface entre ces deux milieux une pression de l’ordre de 13 Mbar et une température d’environ 12 000 K. Enfin, les mesures de gravimétrie réalisées par Voyager 2 ont indiqué, dans le cas d’Uranus et de Neptune, une pression au centre de l’ordre de 6 Mbar et une température de l’ordre de 3 000 K. Le noyau serait surmonté d’un mélange de glaces puis, à une distance d’environ 0,85 rayon du centre, d’une couche d’hydrogène moléculaire.

 

Des magnétosphères diversifiées

Comme la Terre, les quatre planètes géantes sont dotées d’un champ magnétique intense, sans doute généré par effet dynamo dans la partie centrale, fluide et conductrice (fig. 8). Dans le cas de Jupiter et de Saturne, il s’agit probablement de l’hydrogène métallique ; dans celui d’Uranus et de Neptune, le milieu conducteur pourrait être le mélange de glaces riche en molécules dissociées et ionisées. La magnétosphère de Jupiter est celle qui ressemble le plus à celle de la Terre. Elle est de nature dipolaire, avec un axe faiblement incliné par rapport à l’axe de rotation planétaire, et présente, comme dans le cas de la Terre, des ceintures de Van Allen, à l’origine du rayonnement radio de la planète dans le domaine décimétrique, et des phénomènes auroraux à proximité des pôles. Il existe une forte interaction entre le champ magnétique de Jupiter et le satellite Io ; celle-ci se traduit par une intense émission UV et IR au voisinage du pied du tube de champ magnétique perturbé par Io ; des empreintes aurorales associées à Europe et Ganymède ont aussi été observées par le HST puis par la sonde Juno.

La magnétosphère de Saturne se différencie de celle de Jupiter par l’absence des ceintures de Van Allen, due à la présence des anneaux qui empêchent le piégeage des particules le long des lignes de champ ; elle possède aussi, avec les geysers de son satellite Encelade, une source importante de plasma magnétosphérique. Les émissions aurorales de Saturne ont été observées en détail par Cassini et par le HST.

Dans le cas d’Uranus et de Neptune, c’est la sonde Voyager 2 qui nous a révélé la complexité de leur magnétosphère. Elles sont toutes deux de nature dipolaire, mais avec des dipôles très inclinés et excentrés (–60° et 0,31 R pour Uranus et –47° et 0,55 R pour Neptune, R étant le rayon de chaque planète). Dans le cas d’Uranus, la situation est encore compliquée par la position exceptionnelle de l’axe de rotation de la planète, très proche du plan de l’écliptique. Chaque magnétosphère est ainsi unique en son genre…

 

8. Les magnétosphères des quatre planètes géantes. De haut en bas à gauche : Jupiter, Saturne. De haut en bas à droite Uranus et Neptune. (L. Lamy, dans Le Système solaire, T. Encrenaz & J. Lequeux, ISTE, 2021)

A l’origine, une migration modérée

Dans le tour d’horizon qui précède, nous avons présenté une vision statique des planètes géantes, chacune étant placée sur son orbite actuelle. Or, les travaux de simulation numérique menés depuis une vingtaine d’années nous ont permis de retracer l’histoire dynamique des corps du Système solaire, à commencer par les planètes géantes dont les champs de gravité ont eu une influence considérable sur les mouvements des astéroïdes et des objets transneptuniens. Les spécialistes s’accordent à penser que les planètes géantes ont connu, au cours de leur histoire, une migration modérée mais significative. Selon le « modèle de Nice », développé à l’observatoire de Nice, Jupiter, formée initialement à 3,5 UA, juste au-delà de la ligne des glaces, aurait migré vers l’intérieur suite aux interactions de la planète avec le disque protoplanétaire avant la dissipation de celui-ci. Arrivé au niveau de l’orbite de Mars, Jupiter aurait été rejointe par Saturne, et les deux planètes seraient reparties vers l’extérieur : c’est le scénario du « Grand Tack ». Leur passage à la résonance 2:1 (Jupiter faisant deux révolutions tandis que Saturne en fait une) aurait été à l’origine du Grand Bombardement tardif, environ 800 millions d’années après la formation des planètes géantes ; celui-ci est visible sur la surface très cratérisée des astéroïdes et de la Lune (le taux de cratérisation étant un diagnostic de l’âge des surfaces). Ce scénario expliquerait aussi les orbites actuelles des diverses populations d’astéroïdes, la faible population de la ceinture de Kuiper (largement dispersée par la migration vers l’extérieur de Neptune), la faible masse de la planète Mars (dont la croissance aurait été interrompue par la proximité de Jupiter) et enfin le fait que la masse de Neptune est supérieure à celle d’Uranus. Ce scénario a l’avantage de rendre compte d’un certain nombre de faits observés aujourd’hui, mais ne constitue pas pour autant une démonstration, et les recherches se poursuivent dans le domaine particulièrement actif de l’histoire dynamique du Système solaire.

 

Des planètes géantes aux exoplanètes géantes

Si les modèles dynamiques du Système solaire se sont particulièrement développés au cours des vingt dernières années, c’est grâce au développement de la simulation numérique et des supercalculateurs, mais ce n’est pas la seule raison. Depuis 1995, nous savons que les exoplanètes sont nombreuses autour des étoiles voisines du Soleil, et aussi qu’il existe une nouvelle population auparavant inconnue, celle des exoplanètes géantes à proximité immédiate de leur étoile hôte. Pour expliquer ce phénomène, totalement inattendu dans les modèles de formation par nucléation, il a fallu faire appel au mécanisme de migration décrit ci-dessus : la planète géante se forme par nucléation loin de son étoile, puis s’en rapproche en spiralant sous l’effet de son interaction avec le gaz du disque protoplanétaire. Elle peut s’en approcher jusqu’au bord interne du disque, ce qui expliquerait la présence de nombreuses exoplanètes géantes très proches de leur étoile (beaucoup se situent à 0,03 UA). Le développement des modèles de migration pour rendre compte de la dynamique des systèmes exoplanétaires a sans aucun doute influencé les recherches concernant l’évolution dynamique du Système solaire. Dans notre cas, la migration des planètes géantes est restée modérée, fort heureusement pour l’histoire des planètes telluriques… et la nôtre.

 

Quel avenir pour l’exploration des planètes géantes ?

Grâce aux missions Galileo, Juno et Cassini-Huygens, nous avons une connaissance approfondie de Jupiter et de Saturne. Cela ne signifie pas que toutes les questions soient résolues, bien au contraire. À titre d’exemple, on ne connaît toujours pas la nature chimique des « chromophores » responsables de la couleur de la Grande Tache rouge ; dans le cas de Saturne, il faudrait une sonde de descente, analogue à celle de Galileo sur Jupiter, qui nous renseignerait sur la composition élémentaire et isotopique de l’atmosphère. Un tel projet a été présenté dans le cadre des programmes spatiaux de la Nasa et de l’ESA, mais n’a pas été retenu à ce jour. Les futures missions sélectionnées à destination des systèmes de Jupiter et de Saturne visent plutôt leurs satellites, dans le cadre de l’étude de leur habitabilité (Juice et Europa Clipper vers Europe et Ganymède, Dragonfly vers Titan).

Dans le cas des deux géantes glacées, notre ignorance est bien plus grande. Nous ne comprenons toujours pas pourquoi ces deux planètes, si voisines en volume et en densité, ont des propriétés si différentes : pourquoi Neptune possède- t-elle une énergie interne alors qu’Uranus en est dépourvue ? Comprendre l’origine de cette différence nous aiderait sans doute à mieux appréhender la diversité des exo-Neptunes autour d’autres étoiles, dont on sait aujourd’hui qu’elles sont particulièrement nombreuses… Il y a eu de nombreux débats, au cours des dernières années, autour d’un projet conjoint ESA-Nasa à destination de l’une des deux géantes glacées, voire des deux. Mais la grande difficulté réside dans leur éloignement du Soleil et de la nécessité de trouver une configuration orbitale favorable, et, à ce jour, aucune décision n’a été prise. Il faut espérer que l’exploration des géantes glacées restera une forte priorité de l’exploration planétaire pour les décennies à venir.

 

Thérèse Encrenaz – Observatoire de Paris

 

[1]. La circulation de Hadley est la circulation de masses d’air à basse altitude depuis les tropiques vers l’équateur. [2]. Un corps noir est un objet idéal qui absorbe toute l’énergie électromagnétique qu’il reçoit, ce qui se traduit par l’émission d’un rayonnement thermique, dit rayonnement du corps noir.

 

 

Instagram
YouTube
YouTube
Follow by Email