Coalescence d’un trou noir de 23 masses solaires avec un astre compact 9 fois plus léger et de nature inconnue
Les détecteurs Virgo (USA) et LIGO (Italie) ont enregistré le 14 août 2019 des ondes gravitationnelles (des déformations de l’espace-temps) dont la fréquence est montée de 20 à 100 Hz environ en deux secondes. Leur analyse a révélé qu’elles ont été émises durant les dernières secondes avant la fusion de deux astres en un seul plus massif . Ce couple d’astres, avant qu’il fusionne en un trou noir plus massif de 25,6 masses solaires, était formé d’un astre compact de 2,6 masses solaires et d’un trou noir de 23,2 masses solaires. Aucune contrepartie connue à ce jour n’a été observée dans le spectre électromagnétique (lumière visible, ondes radio, rayons X et gamma).
Mais au fait, direz-vous, si on additionne les masses des deux astres, on trouve 2,6+23,2=25,8. Or l’astre final a une masse de 25,6 masses solaires. Où sont passées les 0,2 masses solaires manquantes ? Elles ont été converties en énergie, selon la célèbre formule E=mc**2, précisément celle qui a propagé des déformations d’espace-temps sous forme d’ondes gravitationnelles.
Cet événement présente deux particularités intéressantes.
D’abord la masse du corps le plus léger, 2,6 masses solaires, en fait soit le trou noir le moins massif jamais observé, soit l’étoile à neutrons la plus massive connue. En principe, rien ne s’oppose à l’existence d’un trou noir de 2,6 masses solaires, mais les scénarios actuels de l’effondrement des étoiles massives suggèrent qu’on obtienne, outre les quantités énormes de matière éjectées dans l’espace, des trous noirs plus massifs. En ce qui concerne les étoiles à neutrons, tous les modèles actuels décrivant les propriétés de leur matière (équations d’état), quoique nombreux et tous relativement spéculatifs, prévoient pour les étoiles à neutrons une masse maximale n’excédant 2 masses solaires que de très peu.
L’autre intérêt est la grande différence de masses entre les deux astres au moment où ils ont émis ces ondes gravitationnelles. Une onde gravitationnelle émise par deux astres de même masse est surtout intense à une certaine fréquence, que l’on peut appeler la fréquence fondamentale du système. Deux astres de masses très différentes émettent, en plus de ce mode fondamental, des ondes gravitationnelles à des fréquences multiples du mode fondamental. Si on faisait un parallèle avec la musique, on dirait que les systèmes asymétriques ont un timbre plus riche que les systèmes formés de deux astres de même masse. Cela offre des contraintes nouvelles pour mettre à l’épreuve la théorie de la relativité générale en champ gravitationnel fort, ainsi que les théories alternatives. Encore une fois, on ne mesure pas de déviation entre ce qui est prédit par la théorie de la relativité générale et ce qui est observé.
Fabrice Mottez, CNRS, Observatoire de Paris-psl
Lien vers l’article de la découverte : https://ui.adsabs.harvard.edu/abs/2020arXiv200612611T/abstract