LE MAGAZINE DES SCIENCES DE L’UNIVERS EN AFRIQUE

Selon des simulations numériques d’impacts géants, il serait très difficile de former de gros satellites autour de planètes rocheuses de masse supérieure à 6 masses terrestres.

Si l’on met de côté le cas un peu particulier du couple Pluton-Charon, la planète du Système solaire possédant le plus gros satellite par rapport à sa propre masse est la Terre. La Lune représente en effet plus de 1 % de la masse terrestre. Cette configuration serait le résultat d’un impact géant survenu il y a environ 4,47 milliards d’années (Ga) entre une planète, la proto-Terre, un peu plus petite que la Terre elle-même, et un objet de la taille de Mars, Théia. Cet impact aurait détruit Théia et excavé une partie du manteau terrestre. Et c’est à partir de ce matériau rassemblé en un disque de gaz et de débris que la Lune se serait formée. Selon les modèles actuels d’évolution du Système solaire, les impacts géants auraient été inévitables, et même communs, dans la jeunesse de celui-ci. Au point que l’on se demande pourquoi Vénus ne possède pas, elle aussi, un gros satellite1. Une autre question brûle les lèvres : qu’en est-il des autres systèmes planétaires ? De nombreuses exoplanètes de taille comparable à la Terre (exo-Terres) ou un peu plus grosses (super-Terres) ont été recensées. Celles-ci possèdent-elles, dans leur majorité, de grosses exo-lunes ? Une équipe de chercheurs dirigée par Miki Nakajima, de l’université de Rochester, s’est penchée sur cette question à l’aide de simulations numériques d’impacts géants2. Ces chercheurs notent tout d’abord qu’une étude approfondie réalisée sur une soixantaine de super-Terres répertoriées dans le catalogue de la mission Kepler n’a mis en évidence aucune exo-lune autour de ces exoplanètes. Détecter une exo-lune n’est évidemment pas une mince affaire, et ce résultat négatif ne signifie pas que les super-Terres sont systématiquement dépourvues de satellite. Mais il se pourrait aussi qu’il traduise une tendance bien réelle. C’est en tout cas ce que suggèrent les simulations numériques de Miki Nakajima et de ses collègues (fig. 1). Selon ces calculs, la formation d’un gros satellite à la suite d’un impact géant ne pourrait pas se produire pour des super-Terres rocheuses de 6 masses terrestres ou plus (fig. 2), ce qui correspond à des planètes d’au moins 1,6 rayon terrestre. Pour des super-Terres composées de glace, la masse seuil tombe à une masse terrestre, soit une planète d’environ 1,3 rayon terrestre. Ce résultat s’explique par la quantité d’énergie libérée pendant l’impact, qui est d’autant plus élevée que la masse totale du système (proto-planète plus impacteur) est grande. Or, plus cette énergie est élevée, plus la fraction de matériau à l’état de vapeur dans le disque de débris est importante. Un embryon de satellite de 100 m à 100 km se formant dans un tel disque est soumis à d’intenses forces de frottement qui le poussent à migrer vers la planète mère. Son destin est alors inéluctable : il va, à brève échéance, franchir la limite de Roche et se disloquer. Difficile, dans ces conditions, de former un gros satellite.

1. Deux simulations numériques pour des planètes d’une masse terrestre, en haut (Rocky planet), pour une planète rocheuse, et en bas (Icy planet) pour une planète de glace. Dans le premier cas, il se forme bien un satellite, mais pas dans le second. Pour les planètes rocheuses, la masse seuil au-dessus de laquelle la formation d’un satellite est entravée est de 6 masses terrestres. (Nakajima et al., 2022)

 

Si ces simulations reflètent la réalité, la chasse aux exo-lunes autour de super-Terres pourrait s’annoncer plus compliquée que prévu. Elle devra en effet se focaliser sur des planètes de taille comparable à celle de la Terre, ce qui requiert des moyens d’observation plus puissants que pour une recherche similaire autour de super-Terres. Ce résultat compromet aussi quelque peu l’habitabilité des super-Terres. La présence de la Lune permet en effet de maintenir l’inclinaison de l’axe de rotation de la Terre dans une gamme de valeurs relativement étroite. Notre planète peut ainsi se prémunir de variations climatiques trop extrêmes ou fréquentes, donnant à la vie le temps nécessaire pour évoluer vers des formes complexes.

2. Selon les simulations numériques de Miki Nakajima, la formation de gros satellites suite à un impact géant n’est sans doute pas possible pour les super-Terres trop massives. Le seuil se situe autour de 6 masses terrestres pour les planètes rocheuses (à gauche), et une masse terrestre pour les planètes de glace (à droite). (© Nakajima et al., 2022)

 

Frédéric Deschamps, IESAS, Taipei, Taïwan

 

Notes

  1. Cette question n’a pour le moment pas de réponse. Une hypothèse est que Vénus aurait subi deux impacts. Le premier aurait bien créé un satellite, mais le second aurait modifié la rotation de Vénus de telle façon que, sous l’effet des forces de marée, ce satellite aurait migré vers Vénus au lieu de s’en éloigner, et se serait disloqué en franchissant la limite de Roche. Cette explication a le mérite d’expliquer la vitesse de rotation faible et rétrograde de Vénus. Mais il est aussi possible que Vénus n’ait pas subi d’impact géant.
  2. Nakajima M. et al., « Large planets may not form fractionally large moons », Nature Communications, 13:568, 2022. doi : 10.1038/s41467-022-28063-8.

 

Instagram
YouTube
YouTube
Follow by Email