Les récentes missions de retour d’échantillons d’astéroïdes primitifs représentent une étape importante dans notre compréhension des mystères de la formation du Système solaire et de son évolution. Dans les années 2010, les missions OSIRIS-REx de la Nasa et Hayabusa2 de la Jaxa se sont embarquées dans un voyage à destination de deux astéroïdes : Bennu et Ryugu (fig. 1a et 1b). Les missions ont récemment rapporté sur Terre des grains et des poussières qu’elles ont collectés à la surface des deux astéroïdes. Les analyses de ces précieux échantillons en laboratoire devraient nous en apprendre beaucoup sur les processus qui ont façonné notre Système solaire depuis 4,57 milliards d’années.
Ryugu et Bennu sont qualifiés d’astéroïdes primitifs, car ils ont relativement peu chauffé depuis la formation et ont préservé de précieuses informations sur le Système solaire primitif. D’après les modèles de formation, on pense que les matériaux composant les astéroïdes primitifs, les comètes, ainsi que les objets transneptuniens se sont formés loin dans le disque. Dans ces régions lointaines, la température était faible et ces matériaux contenaient donc probablement un mélange de minéraux, de glaces et de matières organiques. En étudiant la composition et la structure des petits corps primitifs, les scientifiques espèrent reconstituer les différentes étapes de la formation des planètes : l’accrétion des premiers planétésimaux, les processus hydrothermaux qui ont modifié leur composition et leur structure, ainsi que leur évolution dynamique. Un autre objectif clé de cette analyse est de connaître le rôle des petits corps primitifs dans l’apport d’eau et de matière organique dans le Système solaire interne, notamment sur Terre. Les scientifiques cherchent à comprendre l’origine des éléments volatils qui les composent et leur diversité finale.
L’avantage de pouvoir analyser des fragments de ces objets sur Terre est que les instruments des laboratoires sont beaucoup plus diversifiés que ceux des télescopes ou embarqués à bord des sondes spatiales. Cet arsenal d’instruments en laboratoire permet donc de caractériser avec un meilleur niveau de détail la composition chimique, minéralogique et isotopique, ainsi que la microstructure des astéroïdes primitifs. Avant les années 2020, les seuls échantillons analogues aux astéroïdes primitifs que nous pouvions analyser en laboratoire étaient les chondrites carbonées, une classe de météorites supposée provenir de ces objets étant donné leur forte teneur en phases volatiles (eau et matière organique) par rapport aux autres météorites. Cependant, on ne possède que peu de chondrites carbonées dans nos collections, notamment parce qu’il s’agit d’objets très fragiles : la plupart des météorites primitives sont probablement détruites lors de leur entrée dans l’atmosphère et ne parviennent pas jusqu’à la surface. De plus, les chondrites carbonées peuvent être contaminées par l’atmosphère terrestre pendant leur séjour sur Terre. Leur composition se retrouve légèrement modifiée par rapport à celle de leurs corps parents astéroïdaux. C’est donc pour mieux comprendre la composition des astéroïdes primitifs que furent lancées dans les années 2010 deux missions de retour d’échantillons à destination de ces petits corps particulièrement intéressants.
Les missions Hayabusa2 et OSIRIS-REx
Hayabusa2 est une mission de l’agence spatiale japonaise (Jaxa), lancée en 2014. Il s’agit de la deuxième mission de retour d’échantillons d’astéroïdes. En effet, la mission Hayabusa (Jaxa) avait rapporté en 2010 environ 1 500 grains de poussières micrométriques de l’astéroïde Itokawa. Hayabusa2 est néanmoins la première mission à destination d’un astéroïde carboné, car Itokawa appartient à un autre type de petits corps, constitués principalement de silicates. En 2016, deux ans après Hayabusa2, c’est la mission OSIRIS-REx de l’agence spatiale américaine (Nasa) qui est lancée. OSIRIS-REx et Hayabusa2 atteignent leurs cibles, Bennu et Ryugu, en 2018 et 2019 respectivement.
Ryugu et Bennu sont deux astéroïdes géocroiseurs, leurs orbites sont proches de celle de la Terre, ce qui représente un avantage pour envoyer deux sondes ycollecter des échantillons avant de les rapporter sur Terre. En plus de nous apporter des informations sur le Système solaire primitif, l’analyse des échantillons nous permettra d’en apprendre plus sur le danger que peuvent représenter les astéroïdes géocroiseurs. En étudiant la composition et la structure de ces objets, les scientifiques seront en mesure de comprendre le comportement de géocroiseurs similaires à Ryugu et Bennu, ainsi que les stratégies à mettre en œuvre pour les dévier, dans le cas où ils deviendraient de potentielles menaces pour la Terre.
Après avoir atteint leurs cibles respectives, les deux sondes ont caractérisé en détail leur surface, à différentes échelles, et pendant plusieurs mois. Cette caractérisation avait pour but de mieux comprendre les propriétés physiques, géologiques et chimiques des astéroïdes pour apporter un contexte aux futures analyses des échantillons, mais aussi de trouver des sites de collectes adaptés.
Les mesures par les instruments des deux sondes ont révélé que les deux astéroïdes partagent de nombreux points communs. Ils ont une morphologie similaire, en forme de toupie. Leur surface n’est pas constituée de régolithe, comme sur la Lune, mais est couverte de rochers. L’atterrisseur MASCOT de la sonde Hayabusa2 a par exemple photographié depuis la surface des rochers de taille décimétrique. Le plus gros rocher à la surface de Ryugu, nommé Otohime, a une taille d’environ 160 m (fig. 2). Cette surface particulière, couplée au fait que les deux astéroïdes ont une faible densité, suggère qu’ils ne sont pas un seul bloc monolithique, mais plutôt un agrégat de différents fragments qui tiennent ensemble par gravité. Ce type de structure, appelé « pile de débris », indique que Ryugu et Bennu sont en fait des fragments d’objets plus gros. Leurs corps parents, probablement situés dans la ceinture principale d’astéroïdes, entre Mars et Jupiter, ont subi un ou plusieurs impacts successifs qui les ont fragmentés. Certains fragments se sont ensuite réaccumulés pour former les deux astéroïdes tels qu’on les connaît aujourd’hui.
Un autre résultat majeur de la mission concerne la composition de Ryugu et Bennu. Les deux sondes avaient à leur bord des spectromètres infrarouges pour déterminer la composition de la surface. Ces mesures ont notamment permis la détection de bandes d’absorption vers 2,7-3 μm sur les deux objets, caractéristiques de la présence de silicates hydratés. Cette observation suggère que le matériel d’origine de Ryugu et Bennu provient des régions lointaines du disque protoplanétaire, là où la glace d’eau a pu se condenser. Cette glace a été accrétée par les corps parents de Ryugu et Bennu. Par des processus de chauffage, elle a ensuite fondu et a en partie altéré les minéraux anhydres, pour former notamment les silicates hydratés que l’on détecte aujourd’hui à la surface des deux objets. Le spectromètre OVIRS de la sonde OSIRIS-REx a aussi observé une bande vers 3,4 μm indiquant la présence de carbonates, qui sont également des minéraux produits par l’altération aqueuse (fig. 3).
Le défi pour les deux missions a été de trouver des sites d’échantillonnage scientifiquement intéressants et représentatifs, tout en permettant aux deux sondes de réaliser des collectes en toute sécurité. Un des objectifs était de collecter des échantillons relativement jeunes par rapport à la surface exposée à l’environnement spatial. Les surfaces des corps sans atmosphère du Système solaire, comme les astéroïdes, subissent en continu un bombardement par les particules chargées du vent solaire, les rayons cosmiques et les impacts de micrométéorites. Ce processus est appelé altération spatiale. L’altération spatiale et le chauffage par le Soleil n’affectent qu’une faible épaisseur de la surface des astéroïdes géocroiseurs, mais suffisent à modifier, en quelques dizaines de milliers d’années, leurs propriétés spectrales. Or, les spectres des astéroïdes sont la principale source d’information des scientifiques pour contraindre leur composition ! Les équipes des missions Hayabusa2 et OSIRISREx ont donc cherché à collecter des échantillons peu exposés à l’environnement spatial, car ils sont plus représentatifs de la composition initiale de Ryugu et Bennu. La comparaison entre ces échantillons intacts et la surface exposée des astéroïdes peut aider à comprendre les effets de l’altération spatiale sur les astéroïdes primitifs avec le temps.
L’équipe de la mission OSIRIS-REx a choisi de collecter des échantillons dans un cratère relativement jeune. Le matériau du cratère a été récemment exposé, et est beaucoup moins affecté par l’altération spatiale que le reste de la surface. Le site de collecte situé dans le cratère, surnommé Nightingale, avait aussi l’avantage d’être suffisamment dégagé pour réaliser la collecte. Le 20 octobre 2020, le bras robotique de la sonde OSIRIS-REx touche brièvement la surface de Bennu. Pendant ce court laps de temps, la sonde souffle de l’azote sur le sol. En faisant cela, elle soulève la poussière et les fragments légers qui sont ensuite ramassés par un collecteur appelé TAGSAM.
De son côté, la sonde Hayabusa2 a utilisé une autre méthode pour accéder à du matériau non exposé à l’environnement spatial. Après une première collecte réalisée avec succès le 21 février 2019 à la surface, la sonde a effectué une deuxième collecte, cette fois-ci de matériau provenant en partie de la sous-surface. Pour excaver ce matériau enfoui, la sonde a largué un impacteur qui a créé un cratère de 10 m de diamètre et de 1 m de profondeur environ. La sonde a ensuite réalisé une collecte dans les éjectats du cratère, le 11 juillet 2019. Pour prélever les échantillons de la surface, la sonde Hayabusa2 ne s’est pas posée, mais s’est rapprochée jusqu’à une certaine distance, avant de tirer une balle sur le sol de l’astéroïde. L’impact a soulevé des poussières et des particules plus grosses : une partie d’entre elles a atteint le cornet de collecte de la sonde.
Retour des échantillons et suite des missions
La capsule contenant les échantillons de Ryugu est larguée sur Terre par la sonde Hayabusa2 en décembre 2020. Elle a atterri dans le désert de Woomera, en Australie (fig. 4). Après avoir récupéré le gaz contenu dans la capsule scellée, les équipes japonaises ont transféré celle-ci à l’Institute of Space and Astronautical Science, à Sagamihara, au Japon. La capsule a été placée et ouverte dans la Curation Facility, un ensemble d’enceintes sous vide ou sous azote permettant de stocker et d’analyser les grains sans les exposer à l’atmosphère terrestre. En tout, ce sont environ 5,4 g qui ont été rapportés par la sonde pour l’ensemble des grains des deux sites de collecte (fig. 5). Depuis, ils sont caractérisés au sein de la Curation Facility avec des techniques non destructives, comme la spectroscopie infrarouge. Cette analyse préliminaire apporte une première caractérisation des échantillons en préservant leur intégrité. Mais pour mieux comprendre les propriétés physiques et chimiques des grains de Ryugu, une petite quantité de grains a été extraite de la Curation Facility et distribuée à six équipes internationales. Ces équipes ont pu caractériser des grains avec des techniques complémentaires afin d’extraire le plus d’informations possible de ces précieux échantillons.
Grâce à ces analyses, les scientifiques ont compris que Ryugu est le fragment d’un objet qui a accrété de la glace d’eau et de dioxyde de carbone et qui, par conséquent, s’est formé loin dans le Système solaire. Le corps parent de Ryugu a chauffé à faible température, faisant fondre la glace qui a ensuite altéré une très grande partie des minéraux initiaux pour former des phases secondaires hydratées, comme des phyllosilicates ou des carbonates, confirmant les analyses à distance de la surface des astéroïdes, rappelées plus haut (fig. 6). En plus des minéraux, les chercheurs ont détecté diverses molécules organiques dans les échantillons, dont certaines constitutives des acides nucléiques (ADN, ARN), comme l’uracile (C4H4N2O2) (fig. 7). De fines textures associées à l’irradiation par le vent solaire et au bombardement par les micrométéorites ont été observées sur certains grains provenant de la surface. Grâce à ces observations, les scientifiques vont pouvoir comprendre quels sont les effets de l’altération spatiale sur les astéroïdes carbonés, avec l’objectif de remonter à la composition originelle d’un astéroïde exposé observé à distance. Les échantillons de Ryugu ressemblent beaucoup à certaines chondrites carbonées qui ont subi de l’altération aqueuse à faible température, et qui sont plutôt rares dans nos collections. Cependant, quelques différences entre Ryugu et les chondrites ont été observées, suggérant que ces dernières pourraient avoir été altérées lors de leur séjour sur Terre. Les échantillons de Ryugu sont donc très précieux car ils nous permettent de comprendre la composition initiale du Système solaire, sans ce biais de l’atmosphère terrestre !
La capsule de la sonde OSIRIS-REx contenant les échantillons de Bennu a atterri dans le désert de l’Utah, aux ÉtatsUnis, le 24 septembre 2023. Elle a été immédiatement transférée au centre spatial Johnson de la Nasa à Houston. L’ouverture complète de la capsule a été retardée par la présence de poussières en dehors du collecteur qui ont été récupérées par les scientifiques, puis par le blocage du couvercle par deux vis récalcitrantes. Mais, en janvier 2024, la capsule est finalement ouverte, révélant l’ensemble des échantillons de Bennu (fig. 8). En tout, ce sont plus de 120 g qui ont été rapportés par OSIRIS-REx. Les analyses des échantillons de Bennu sont en cours, et les premiers résultats suggèrent que cet astéroïde, tout comme Ryugu, contient des minéraux hydratés et de la matière organique.
Après ces premières analyses, les grains de Ryugu et de Bennu sont loin d’avoir révélé tous leurs secrets. Certains échantillons de Ryugu sont mis à disposition de la communauté scientifique internationale par la Jaxa pour poursuivre les mesures et améliorer notre compréhension de cet objet. La Nasa devrait aussi ouvrir des appels à projets pour que les scientifiques du monde entier puissent analyser les échantillons de Bennu. Une autre partie des grains des deux astéroïdes est stockée dans des environnements propres ; ces précieux fragments seront analysés dans le futur, avec des techniques et des instruments plus performants.
Bien qu’elles aient rapporté les échantillons sur Terre, les missions des sondes Hayabusa2 et OSIRISREx ne sont pas terminées. Elles ont encore suffisamment d’énergie pour explorer de nouveaux objets. Elles n’ont plus de quoi collecter de nouveaux échantillons, mais pourront néanmoins caractériser la surface de différents astéroïdes. La sonde Hayabusa2 devrait atteindre en 2031 (1998) KY26, un petit objet de 30 m de diamètre qui tourne sur lui-même en seulement 10 minutes ! Cet objet intrigue les scientifiques car, malgré sa rotation rapide, il ne s’est pas fragmenté. La sonde effectuera aussi un survol d’un autre astéroïde en 2026. De son côté, la sonde OSIRIS-REx poursuit son voyage vers l’astéroïde géocroiseur (99942) Apophis, qu’elle devrait atteindre en 2029 (encadré).
Les missions Hayabusa2 et OSIRISREx vont véritablement changer notre compréhension de la formation du Système solaire et de son évolution. Les analyses des échantillons nous apporteront des éléments sur la formation des planétésimaux primitifs et sur leur évolution compositionnelle et dynamique. Elles nous permettront aussi de mieux comprendre l’implication des astéroïdes primitifs dans l’apport d’eau et demoléculesorganiques,élémentsnécessaires à l’émergence de la vie, sur la Terre primitive.
Tania LE PIVERT-JOLIVET | Instituto de Astrofísica de Canarias (IAC)
Publié dans le n°185 de l’Astronomie
- H. H. Kaplan et al., « Bright carbonate veins on asteroid (101955) Bennu: Implications for aqueous alteration history », Science 370, 2020, eabc3557, DOI:10.1126/science.abc3557.
- T. Nakamura et al., « Formation and evolution of carbonaceous asted Ryugu: Direct evidence from returned samples », Science 379, 2023, eabn8671,DOI:10.1126/science.abn8671.
- Y. Oba et al., « Uracil in the carbonaceous asteroid (162173) Ryugu ». Nat. Commun. 14, 2023, 1292, https://doi.org/10.1038/s41467-023-36904-3. nS.Sugitaetal.,«Thegeomorphology,color,and thermal properties of Ryugu: Implications for parent-body processes », Science 364, 2019, eaaw0422. DOI:10.1126/science.aaw0422.
- T. Yokoyama et al., « Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites », Science 379, 2023, eabn7850, DOI: 10.1126/science.abn7850.
- R. A. Barry, « NASA Announces OSIRIS-Rex Bulk Sample Mass». NASA’s Johnson Space Center, February 15, 2024, https://blogs.nasa.gov/osirisrex/2024/02/15/nasa-announces-osiris-rex-bulk-sa mple-mass/.